On March 31, in accordance with the typical design requirements of the State Grid, the f irst large electric vehicle (EV) charging station, built by the North China Grid,
A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in th...A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.展开更多
Purpose–The purpose of this paper is to optimize the design of charging station deployed at the terminal station for electric transit,with explicit consideration of heterogenous charging modes.Design/methodology/appr...Purpose–The purpose of this paper is to optimize the design of charging station deployed at the terminal station for electric transit,with explicit consideration of heterogenous charging modes.Design/methodology/approach–The authors proposed a bi-level model to optimize the decision-making at both tactical and operational levels simultaneously.Specifically,at the operational level(i.e.lower level),the service schedule and recharging plan of electric buses are optimized under specific design of charging station.The objective of lower-level model is to minimize total daily operational cost.This model is solved by a tailored column generation-based heuristic algorithm.At the tactical level(i.e.upper level),the design of charging station is optimized based upon the results obtained at the lower level.A tabu search algorithm is proposed subsequently to solve the upper-level model.Findings–This study conducted numerical cases to validate the applicability of the proposed model.Some managerial insights stemmed from numerical case studies are revealed and discussed,which can help transit agencies design charging station scientifically.Originality/value–The joint consideration of heterogeneous charging modes in charging station would further lower the operational cost of electric transit and speed up the market penetration of battery electric buses.展开更多
文摘On March 31, in accordance with the typical design requirements of the State Grid, the f irst large electric vehicle (EV) charging station, built by the North China Grid,
基金financially supported by the National Natural Science Foundation of China under Project No.51874267 and No.12272374the Fundamental Research Funds for the Central Universities under Project Nos.WK2480000008,WK2480000007,and WK2320000049。
文摘A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.
基金This work is supported by National Natural Science Foundation of China(No.72101115)Natural Science Foundation of Jiangsu(No.BK20210316).
文摘Purpose–The purpose of this paper is to optimize the design of charging station deployed at the terminal station for electric transit,with explicit consideration of heterogenous charging modes.Design/methodology/approach–The authors proposed a bi-level model to optimize the decision-making at both tactical and operational levels simultaneously.Specifically,at the operational level(i.e.lower level),the service schedule and recharging plan of electric buses are optimized under specific design of charging station.The objective of lower-level model is to minimize total daily operational cost.This model is solved by a tailored column generation-based heuristic algorithm.At the tactical level(i.e.upper level),the design of charging station is optimized based upon the results obtained at the lower level.A tabu search algorithm is proposed subsequently to solve the upper-level model.Findings–This study conducted numerical cases to validate the applicability of the proposed model.Some managerial insights stemmed from numerical case studies are revealed and discussed,which can help transit agencies design charging station scientifically.Originality/value–The joint consideration of heterogeneous charging modes in charging station would further lower the operational cost of electric transit and speed up the market penetration of battery electric buses.