In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries fa...In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.展开更多
An open quantum battery(QB)model of a single qubit system charging in a coherent auxiliary bath(CAB)consisting of a series of independent coherent ancillae is considered.According to the collision charging protocol we...An open quantum battery(QB)model of a single qubit system charging in a coherent auxiliary bath(CAB)consisting of a series of independent coherent ancillae is considered.According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state.We find that the full charging capacity(or the maximal extractable work(MEW))of QB,in the weak QB-ancilla coupling limit,is positively correlated with the coherence magnitude of ancilla.Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength,such as the MEW,average charging power and the charging efficiency,when considering the bath to be a thermal auxiliary bath(TAB)and a CAB,respectively.We find that when the QB with CAB,in the weak coupling regime,is in fully charging,both its capacity and charging efficiency can go beyond its classical counterpart,and they increase with the increase of coherence magnitude of ancilla.In addition,the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing,and the first peak value can even be larger than the full charging MEW of QB.This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process.These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla.This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of“fuel”of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.展开更多
Electric vehicles(EVs)are one of the more emerging and significant areas,representing the future of transportation.Moreover,the increased demand for EVs brings greater attention toward the development of the charging ...Electric vehicles(EVs)are one of the more emerging and significant areas,representing the future of transportation.Moreover,the increased demand for EVs brings greater attention toward the development of the charging infrastructure.Therefore,this paper addresses the multifunctional charging system integrated with the grid,EV battery and household utilities.It presents an improved idea about the charging system with grid connection and its connection to the varying local nonlinear load.It consists of a voltage source converter(VSC)tied to the grid and bidirectional converter,which charges/discharges the battery and also regulates the constant voltage across the DC bus,where all the vehicles are connected for charging.It also shows the operations of charging/discharging the battery of EVs and the voltage and current profile across the battery as per the state of charge(SOC)limits.Moreover,the sparse constrained proportionate normalized least mean fourth(SCP-NLMF)based method is used to control the charging system by estimating the active component of load current.The derived mean square error(MSE)of load current is improved due to low convergence rates in later periods.The adaptation process becomes more accurate by mitigating the MSE error of load current to converge faster and the dynamic response is further improved.The simulated and tested results validate the accuracy and efficacy of the SCPNLMF technique and charging system.展开更多
Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conver...Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process.展开更多
The increase in global electricity consumption has made energy efficiency a priority for governments.Consequently,there has been a focus on the efficient integration of a massive penetration of electric vehicles(EVs)i...The increase in global electricity consumption has made energy efficiency a priority for governments.Consequently,there has been a focus on the efficient integration of a massive penetration of electric vehicles(EVs)into energy markets.This study presents an assessment of various strategies for EV aggregators.In this analysis,the smart charging methodology proposed in a previous study is considered.The smart charging technique employs charging power rate modulation and considers user preferences.To adopt several strategies,this study simulates the effect of these actions in a case study of a distribution system from the city of Quito,Ecuador.Different actions are simulated,and the EV aggregator costs and technical conditions are evaluated.展开更多
Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on diffe...Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on different surfaces. Thanks to the specially designed structure, it can scavenge vibration energy from all directions. Firstly the device is investigated through finite element method(FEM) simulation. Then the device is evaluated by experiments. The measuremental results show that this device can generate an amount of 25 n C charge during once shake by charging a 10 n F capacitor. Besides, an output voltage about 100 V is obtained, which is able to directly light up several light-emitting diodes(LEDs) simultaneously. At last, the device is utilized as a self-powered orientation sensor, which shows explicit directivity. This work extends the applications of TEG for ambient vibration energy harvesting techniques and the self-powered orientation sensor.展开更多
This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory(EEPROM).The low power is minimized by a capacitance divider circuit ...This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory(EEPROM).The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique.The high efficiency is dependent on the zero threshold voltage(V_(th)) MOSFET and the charge transfer switch(CTS) charge pump.The proposed high voltage generator circuit has been implemented in a 0.35μm EEPROM CMOS process.Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48μW and a higher pumping efficiency(83.3%) than previously reported circuits.This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.展开更多
文摘In recent times, lithium-ion batteries have been widely used owing to their high energy density, extended cycle lifespan, and minimal self-discharge rate. The design of high-speed rechargeable lithium-ion batteries faces a significant challenge owing to the need to increase average electric power during charging. This challenge results from the direct influence of the power level on the rate of chemical reactions occurring in the battery electrodes. In this study, the Taguchi optimization method was used to enhance the average electric power during the charging process of lithium-ion batteries. The Taguchi technique is a statistical strategy that facilitates the systematic and efficient evaluation of numerous experimental variables. The proposed method involved varying seven input factors, including positive electrode thickness, positive electrode material, positive electrode active material volume fraction, negative electrode active material volume fraction, separator thickness, positive current collector thickness, and negative current collector thickness. Three levels were assigned to each control factor to identify the optimal conditions and maximize the average electric power during charging. Moreover, a variance assessment analysis was conducted to validate the results obtained from the Taguchi analysis. The results revealed that the Taguchi method was an eff ective approach for optimizing the average electric power during the charging of lithium-ion batteries. This indicates that the positive electrode material, followed by the separator thickness and the negative electrode active material volume fraction, was key factors significantly infl uencing the average electric power during the charging of lithium-ion batteries response. The identification of optimal conditions resulted in the improved performance of lithium-ion batteries, extending their potential in various applications. Particularly, lithium-ion batteries with average electric power of 16 W and 17 W during charging were designed and simulated in the range of 0-12000 s using COMSOL Multiphysics software. This study efficiently employs the Taguchi optimization technique to develop lithium-ion batteries capable of storing a predetermined average electric power during the charging phase. Therefore, this method enables the battery to achieve complete charging within a specific timeframe tailored to a specificapplication. The implementation of this method can save costs, time, and materials compared with other alternative methods, such as the trial-and-error approach.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11775019 and 62173213)the Natural Science Foundation of Shandong Province,China (Grant No.ZR2011FL009)the Shandong Provincial Science and Technology Support Program of Youth Innovation Team in Colleges (Grant Nos.2019KJN041 and 2020KJN005)。
文摘An open quantum battery(QB)model of a single qubit system charging in a coherent auxiliary bath(CAB)consisting of a series of independent coherent ancillae is considered.According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state.We find that the full charging capacity(or the maximal extractable work(MEW))of QB,in the weak QB-ancilla coupling limit,is positively correlated with the coherence magnitude of ancilla.Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength,such as the MEW,average charging power and the charging efficiency,when considering the bath to be a thermal auxiliary bath(TAB)and a CAB,respectively.We find that when the QB with CAB,in the weak coupling regime,is in fully charging,both its capacity and charging efficiency can go beyond its classical counterpart,and they increase with the increase of coherence magnitude of ancilla.In addition,the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing,and the first peak value can even be larger than the full charging MEW of QB.This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process.These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla.This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of“fuel”of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.
基金supported by the Indian Government with Start-up Research Grant(2020/SRG/1742).
文摘Electric vehicles(EVs)are one of the more emerging and significant areas,representing the future of transportation.Moreover,the increased demand for EVs brings greater attention toward the development of the charging infrastructure.Therefore,this paper addresses the multifunctional charging system integrated with the grid,EV battery and household utilities.It presents an improved idea about the charging system with grid connection and its connection to the varying local nonlinear load.It consists of a voltage source converter(VSC)tied to the grid and bidirectional converter,which charges/discharges the battery and also regulates the constant voltage across the DC bus,where all the vehicles are connected for charging.It also shows the operations of charging/discharging the battery of EVs and the voltage and current profile across the battery as per the state of charge(SOC)limits.Moreover,the sparse constrained proportionate normalized least mean fourth(SCP-NLMF)based method is used to control the charging system by estimating the active component of load current.The derived mean square error(MSE)of load current is improved due to low convergence rates in later periods.The adaptation process becomes more accurate by mitigating the MSE error of load current to converge faster and the dynamic response is further improved.The simulated and tested results validate the accuracy and efficacy of the SCPNLMF technique and charging system.
基金the financial supports from the NSFC(51472274)the GDUPS(2016)+2 种基金the program of Guangzhou Science and Technology Project(201504010031)the NSF of Guangdong Province(S2013030013474)the Fundamental Research Funds for the Central Universities
文摘Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process.
文摘The increase in global electricity consumption has made energy efficiency a priority for governments.Consequently,there has been a focus on the efficient integration of a massive penetration of electric vehicles(EVs)into energy markets.This study presents an assessment of various strategies for EV aggregators.In this analysis,the smart charging methodology proposed in a previous study is considered.The smart charging technique employs charging power rate modulation and considers user preferences.To adopt several strategies,this study simulates the effect of these actions in a case study of a distribution system from the city of Quito,Ecuador.Different actions are simulated,and the EV aggregator costs and technical conditions are evaluated.
基金supported by the National Natural Science Foundation of China(Grant Nos.61176103,91323304)the National High-Tech Research and Development Program of China("863"Project)(Grant No.2013AA041102)the Beijing Natural Science Foundation of China(Grant No.4141002)
文摘Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on different surfaces. Thanks to the specially designed structure, it can scavenge vibration energy from all directions. Firstly the device is investigated through finite element method(FEM) simulation. Then the device is evaluated by experiments. The measuremental results show that this device can generate an amount of 25 n C charge during once shake by charging a 10 n F capacitor. Besides, an output voltage about 100 V is obtained, which is able to directly light up several light-emitting diodes(LEDs) simultaneously. At last, the device is utilized as a self-powered orientation sensor, which shows explicit directivity. This work extends the applications of TEG for ambient vibration energy harvesting techniques and the self-powered orientation sensor.
基金supported by the National Natural Science Foundation of China(No.61072010)
文摘This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory(EEPROM).The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique.The high efficiency is dependent on the zero threshold voltage(V_(th)) MOSFET and the charge transfer switch(CTS) charge pump.The proposed high voltage generator circuit has been implemented in a 0.35μm EEPROM CMOS process.Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48μW and a higher pumping efficiency(83.3%) than previously reported circuits.This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.