The highest occupied molecular orbital(HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C60 >C7...The highest occupied molecular orbital(HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C60 >C70 >C80 >C90>C100 >C180. Then we compare fullerenes with carbon nanotubes(CNTs) and graphene sheets(GSs) and find that the increase of the HOMO energy of a fullerene is much faster than that of CNTs and graphene sheets with the same number of C atoms. The rising rate rank is fullerene>CNT>GS, which holds no matter what the number of C atoms is or which structure the fullerene isomer is. This work paves a new path for developing all-carbon devices with low-dimensional carbon nanomaterials as different functional elements.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374174,51390471,51527803,and 51701143the National Basic Research Program of China under Grant No 2015CB654902+4 种基金the National Key Research and Development Program under Grant No 2016YFB0700402the Foundation for the Author of National Excellent Doctoral Dissertation under Grant No 201141the National Program for Thousand Young Talents of China,the Tianjin Municipal Education Commissionthe Tianjin Municipal Science and Technology Commissionthe Fundamental Research Fund of Tianjin University of Technology
文摘The highest occupied molecular orbital(HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C60 >C70 >C80 >C90>C100 >C180. Then we compare fullerenes with carbon nanotubes(CNTs) and graphene sheets(GSs) and find that the increase of the HOMO energy of a fullerene is much faster than that of CNTs and graphene sheets with the same number of C atoms. The rising rate rank is fullerene>CNT>GS, which holds no matter what the number of C atoms is or which structure the fullerene isomer is. This work paves a new path for developing all-carbon devices with low-dimensional carbon nanomaterials as different functional elements.