The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate ...Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.展开更多
The arc ignition based on charring conductive polymers has advantages of simple structure,low ignition power consumption and restart capacity,which bringing it broadly application prospect in hybrid propulsion system ...The arc ignition based on charring conductive polymers has advantages of simple structure,low ignition power consumption and restart capacity,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.In order to optimize the performance of arc ignition system,it is essential to have a deeper understanding of the ignition processes and ignition characteristics of charring conductive polymers.In this paper,the thermal decomposition,electrical conductivity and thermal conductivity characteristics of charring conductive polymers with different conductive additives and matrix materials were comprehensively evaluated.An experimental investigation was conducted to determine the ignition behaviors and characteristics of different charring conductive polymers in a visual ignition combustor.The experiment result showed that the ignition delay and external energy required for ignition are negatively correlated with voltage and initial temperature of the ignition grain,but positively correlated with oxidizer flow velocity.Compared with charring conductive polymers containing multi-walled carbon nanotube,the ignition delay of charring conductive polymers with carbon black is significantly higher and the pyrolysis time is relatively longer.However,the ignition and initial flame propagation of charring conductive polymers with carbon black is more violent and more inclined to carbon particle ignition.Finally,the restart characteristic of different charring conductive polymers was studied.The ignition delay and external energy required for ignition of different charring conductive polymers all reduced with the increasing of the number of ignitions.However,the ignition characteristics would not change a lot after repeated ignition.展开更多
To investigate the charring rate of timber beams exposed to three-side fire, a total of fifteen new and used Douglas-Fir timber beams in four groups exposed to three-side fire were experimentally studied, together wit...To investigate the charring rate of timber beams exposed to three-side fire, a total of fifteen new and used Douglas-Fir timber beams in four groups exposed to three-side fire were experimentally studied, together with the finite element analyses of the temperature distribution in the beam section. The durations of fire exposure were 0 (on a test piece), 10, 15, 20 and 30 min, according to the ISO 834 standard fire curve. The charring depth of each timber beam was calculated by averaging the values at one-third and two-thirds along each cross section to give the charring rate of timber beams. It was found that the timber beam's charring rate reduces as the duration of fire exposure increases and the vertical charring rate is slightly higher than the horizontal one. The areas of beam sections reduce due to charring and the strength and stiffness of the pyrolysis layer near the charring edge decrease owing to the high-temperature. The average horizontal and vertical charring rates are 0.98 and 1.08 mm/min, respectively. To take into account the difference between the test furnace temperature curve and the ISO 834 stand- ard fire curve, some corrections were made for these data to yield the solution for charring rate. With the help of the finite element software ANSYS, the temperature distribution of the wood's cross-section was analyzed. The longer the exposure time is, the greater the effect of density will impose on the distribution of temperature, but the moisture content has no effect.展开更多
Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar...Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.展开更多
Charring composites are widely used in the thermal protection system(TPS) to consume the intense aerodynamic heating during vehicle reentry. The ablation and thermal responses for the charring composites can be studie...Charring composites are widely used in the thermal protection system(TPS) to consume the intense aerodynamic heating during vehicle reentry. The ablation and thermal responses for the charring composites can be studied by using a numerical ablation model, in which the surface ablation and volume ablation could be taken into account. The coupling interactions among temperature, gas motion and interior pressure producing the pyrolysis gas could make the computation more complicated. A multi-physics model is developed to simulate the thermal response coupled with volume ablation and surface ablation. After studying four typical ablation cases, the model is validated, and then the heat transfer mechanisms in ablation are investigated. It is found that the viscous dissipation energy by the motion of pyrolysis gas can be neglected in the simulation. Also, the flow of pyrolysis gas plays an important role in the temperature response, especially under high heat flux condition.展开更多
A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radia...A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radiation caused by surface temperature rise and shrinkage of char surface are considered. Experimental device is designed specially for validating the reliability of the model. Effects of density of materials and heat radiation on pyrolysis of materials have also been investigated.展开更多
Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the firs...Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the first half of the twentieth century.In agricultural lands,forests,and bad-lands,stone-capped pedestals have been used as qualitative and semi-quantitative indicators of active,'extreme'erosion.Little work has been reported on using capstone pedestal data for quantifying soil loss.We postulate that three distinct capstone pedestal types may be present in any given location and that a detailed analysis of a pedestal height histogram may be used to recognize their populations.This analysis can subsequently inform if soil loss can be reliably estimated and if so,which of the existing methods using pedestal height data will provide more accurate results.The three proposed capstone pedestal types are:(1)neo-pedestals formed underneath surface stones exposed by(partial)removal of the soil surface cover;(2)endo-pedestals formed underneath stones that were buried in the soil but have been exposed by erosion;and(3)phoenix-pedestals formed underneath stones from collapsed pedestals.In the pedestal height histogram of any given location,a skew to smaller heights may indicate the existence of endo-and/or phoenix-pedestals,which may be revealed as a bi-(or tri)modal distribution when using a smaller bin size.This concept was applied to a case study where soil loss had been monitored for control plots and mulched plots during a 5-year period following wildfire in a eucalypt plantation.We measured pedestal heights and used methods to quantitatively assess soil loss from soil pedestal data in the available literature.Soil pedestal data at the end of the 5-year period under or overestimated soil loss in the control treatment,with results ranging from 60 to 115%of measured soil loss,depending on the method.It is postulated that phoenix-and endo-pedestals may be a driving factor behind the observed discrepancies.We discuss how future research may provide more insight into dominant processes,and how frequency distributions may be used to select the best methods for estimating soil loss from pedestals.展开更多
In this article,we evaluated the energy performance parameters and gas emissions to identify which of the stoves studied performs best,and the biomass char briquettes with less emission.Biomass char briquettes from pe...In this article,we evaluated the energy performance parameters and gas emissions to identify which of the stoves studied performs best,and the biomass char briquettes with less emission.Biomass char briquettes from peanut shells,cashew nut shells,and corn cobs were produced using wheat flour as a binder.The binder rate was set at 9%and 10%.Based on the energy performance parameters,it was highlighted that the char briquette from corn cob with 9%binder(Char_CC_9%)has the best energy performance,followed by the char briquette from peanut shells with 9%binder(Char_PNS_9%),and lastly,the char briquette from cashew nut shells with 10%binder(Char_CNS_10%).The average energy efficiency of the“jambar”stove was 15.68%,while that of the“Malgache”stove was 12.41%.The average specific fuel consumption of the“jambar”stove was 0.12 kg of fuel per kilogram of water while that of the“Malgache”stove was 0.15 kg of fuel per kilogram of water.In terms of gaseous emissions,CO(carbon monoxide)concentrations were very high for char briquettes from corn cobs,with a CO emission factor of 0.40 g/min and NOx emission factor of 9.79 mg/min.For char briquettes from cashew nut shells,CO and NOx emission factors were respectively 0.30 g/min and 5.32 mg/min.The lowest average concentrations were obtained with char briquettes from peanut shells with a CO emission factor of 0.25 g/min and NOx 3.98 mg/min.展开更多
A phosphorus-containing flame retardant, aluminum hypophosphite(AHPi), has been modified by(3-aminopropyl) triethoxysilane(KH550) to prepare flame-retardant polystyrene(PS). The influence of modified AHPi on the morph...A phosphorus-containing flame retardant, aluminum hypophosphite(AHPi), has been modified by(3-aminopropyl) triethoxysilane(KH550) to prepare flame-retardant polystyrene(PS). The influence of modified AHPi on the morphology and characterization was investigated, and differences in flame retardant properties of the PS/AHPi and PS/modified AHPi were compared. The PS composite can pass the vertical burning tests(UL-94 standard) with a V-0 rating when the mass content of modified AHPi reaches20%, compared with the mass content of 25% AHPi. The element mapping of the PS composite shows that modified AHPi has better dispersion in PS than AHPi. Thermogravimetric analysis results indicated that adding modified AHPi can advance the initial decomposition temperature of the composite material.With the addition of modified AHPi, the decrease in peak heat release rate(p HRR) is more evident than AHPi, and the char yield of the resultant PS composites gradually increased. With the addition of 25%modified AHPi, the p HRR and total heat release of PS composites decreased by 81.4% and 37.6%. The modification of AHPi promoted its dispersion in the PS matrix and improved the char formation of PS composites. The results of real-time infrared spectrometry of PS composites, Fourier transform infrared spectra and X-ray photoelectron analysis of the char layer indicated that modified AHPi has flame retardancy in condensed and gas phases.展开更多
Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Netw...Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Networks(CNNs)for learning a distance function that can map input data from the input space to the feature space.Instead of determining the class of each sample,the Siamese architecture deals with the existence of a few training samples by deciding if the samples share the same class identity or not.The traditional structure for the Siamese architecture was built by forming two CNNs from scratch with randomly initialized weights and trained by binary cross-entropy loss.Building two CNNs from scratch is a trial and error and time-consuming phase.In addition,training with binary crossentropy loss sometimes leads to poor margins.In this paper,a novel Siamese network is proposed and applied to few/zero-shot Handwritten Character Recognition(HCR)tasks.The novelties of the proposed network are in.1)Utilizing transfer learning and using the pre-trained AlexNet as a feature extractor in the Siamese architecture.Fine-tuning a pre-trained network is typically faster and easier than building from scratch.2)Training the Siamese architecture with contrastive loss instead of the binary cross-entropy.Contrastive loss helps the network to learn a nonlinear mapping function that enables it to map the extracted features in the vector space with an optimal way.The proposed network is evaluated on the challenging Chars74K datasets by conducting two experiments.One is for testing the proposed network in few-shot learning while the other is for testing it in zero-shot learning.The recognition accuracy of the proposed network reaches to 85.6%and 82%in few-and zero-shot learning respectively.In addition,a comparison between the performance of the proposed Siamese network and the traditional Siamese CNNs is conducted.The comparison results show that the proposed network achieves higher recognition results in less time.The proposed network reduces the training time from days to hours in both experiments.展开更多
Some ablation experiments of Ethylene-Propylene-Diene Monomer(EPDM)insulator were carried out in quasi-static low temperature gas environment,gas-phase environment,two-phase environment with Al2O3 grain and high conce...Some ablation experiments of Ethylene-Propylene-Diene Monomer(EPDM)insulator were carried out in quasi-static low temperature gas environment,gas-phase environment,two-phase environment with Al2O3 grain and high concentration Al2O3 grain gas environments.Their charring ablation rate,thickness,surface morphology and main ingredient of the charring layer were analyzed.The experiment results show that the main influent factors for the charring ablation rate are the gas temperature,grain concentration and state of grain impact;the main influent factors for the charring layer thickness are the gas velocity and environment pressure;and the process of SiO2 migrating in the charring layer occur commonly in different gas environments.They provide a foundation for the ablation mechanism research and modeling of EPDM insulator.展开更多
Coal contains a significant concentration of free radicals as a result of the coalification process. One of the experimental methods sensitive to the presence of radicals is electron spin resonance (ESR), and differ...Coal contains a significant concentration of free radicals as a result of the coalification process. One of the experimental methods sensitive to the presence of radicals is electron spin resonance (ESR), and differences in ESR spectra for different macerals may provide insight into coal-forming processes. In this study, ESR data along with the H/C atomic ratio (to infer the aromatic fraction) are used to characterize coal samples with the aim of assessing a fire-origin for dominant inertinite macerals. A medium rank C bituminous Witbank No. 4 Seam Upper coal (the parent) was density- fractionated to create vitrinite-rich and inertinite-rich samples. The parent sample consists of 42 vol% vitrinite and 49 vol% inertinite. The density-fractionated samples comprise of 81 vol% total vitrinite (dominated by collotelinite and collodetrinite), and 63 vol% total inertinite (dominated by fusinite, semifusinite, and inertodetrinite). The H/C ratio is 0.74 for the inertinite-rich sample, and 0.85 for the vitrinite-rich counterpart, suggesting the former sample is more aromatic. The ESR spectra obtained for the three samples were found to fit best using a Lorentzian distribution. The fit is noticeably better for the aromatic inertinite-rich sample, for which the spectrum is symmetric. This is attributed to pronounced electron mobility and exchange interactions. The higher radical content of the inertinite-rich and parent samples is attributed to the presence of specific inertinite macerals, namely: fusinite, semifusinite, and inertodetrinite. And, owing to the greater radical content of the inertinite-rich sample, the dominant inertinite macerals are interpreted to have formed through charring of plant matter.展开更多
The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography...The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography system.The images of its erosion state and dynamic ablation rate were obtained.And the charring-layer was analyzed by using SEM and energy spectrum.The experimental results indicate that the erosion rate of EPDM insulation layer impacted by low speed and low concentration particle flow is relatively small in the 1st second since the motor starting,but increases rapidly in 1 to 2.5 s,while the erosion rate of EPDM insulation layer impacted by high speed and high concentration particle flow increases rapidly in the 1st second;the ablation rate at the section eroded intensively by particle flow increases at first,then decreases,and goes to stabilization after 4.5 s;the higher speed and concentration particle flow are,the deeper particles get into charring layer,which lead to more thermal increment and thinner charring layer.展开更多
The gross calorific values of crude and exhausted olive pomace, oak, almond, olive wood, olive oil, kerosene, and diesel are reported in this article. Conversion of crude olive pomace into exhausted olive pomace resul...The gross calorific values of crude and exhausted olive pomace, oak, almond, olive wood, olive oil, kerosene, and diesel are reported in this article. Conversion of crude olive pomace into exhausted olive pomace resulted in 10% reduction in calorific value. The net calorific value of crude olive pomace amounts to 92% of its gross calorific value. The ultimate and proximate analyses of crude olive pomace representing the 2006-2008 olive harvest seasons were determined and compared with analyses pertaining to the 2009-2011 olive harvest seasons in Jordan. Controlled charring of crude olive pomace reduced its mass down to about 20%. Pyrolysis thermogravimetric (TG) and differential thermogravimetric (DTG) curves were recorded under nitrogen atmosphere for crude olive pomace and wood samples. Quantitative data on three DTG major peaks are reported for wood samples and crude olive pomace. A comparison based on market price and calorific value of a fuel showed that olive pomace is the most rewarding fuel for domestic space heating in Jordan.展开更多
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
基金the National Natural Science Foundation of China (No.51673059)the Science and Technology Planning Project of Henan Province (No. 212102210636)the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (East China University of Technology)。
文摘Polyamide 6 (PA6) was employed as a charring agent of intumescent flame retardant (IFR) to improve the flame retardancy of ethylene-vinyl acetate copolymer (EVA). Different processing procedures were used to regulate the localization of IFR in the EVA matrix. Localizations in which IFR was dispersed in the PA6phase or in the EVA phase were prepared. The effect of the localization of IFR on the flame retardancy of EVA was investigated. The limited oxygen index (LOI), vertical burning (UL 94) and cone calorimeter test (CCT)showed that the localization of IFR in the EVA matrix exhibited a remarkable influence on the flame retardancy.Compared with EVA/IFR, a weak improvement in the flame retardancy was observed in the EVA/PA6/IFR blend withthe localization of IFR in the PA6 phase. When IFR was regulated from the PA6 phase to the EVA matrix,a remarkable increase in the flame retardancy was exhibited. The LOI was increased from 27.8%to 32.7%, and the UL 94 vertical rating was increased from V-2 to V-0. Moreover, an approximately 41.36%decrease in the peak heat release rate was exhibited. A continuous and compact intumescent charring layer that formed in the blends with the localization of IFR in the EVA matrix should be responsible for its excellent flame retardancy.
基金Supported by the Fundamental Research Funds for the Central Universities,China(No.30920041102)the National Natural Science Foundation of China(No.11802134).
文摘The arc ignition based on charring conductive polymers has advantages of simple structure,low ignition power consumption and restart capacity,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.In order to optimize the performance of arc ignition system,it is essential to have a deeper understanding of the ignition processes and ignition characteristics of charring conductive polymers.In this paper,the thermal decomposition,electrical conductivity and thermal conductivity characteristics of charring conductive polymers with different conductive additives and matrix materials were comprehensively evaluated.An experimental investigation was conducted to determine the ignition behaviors and characteristics of different charring conductive polymers in a visual ignition combustor.The experiment result showed that the ignition delay and external energy required for ignition are negatively correlated with voltage and initial temperature of the ignition grain,but positively correlated with oxidizer flow velocity.Compared with charring conductive polymers containing multi-walled carbon nanotube,the ignition delay of charring conductive polymers with carbon black is significantly higher and the pyrolysis time is relatively longer.However,the ignition and initial flame propagation of charring conductive polymers with carbon black is more violent and more inclined to carbon particle ignition.Finally,the restart characteristic of different charring conductive polymers was studied.The ignition delay and external energy required for ignition of different charring conductive polymers all reduced with the increasing of the number of ignitions.However,the ignition characteristics would not change a lot after repeated ignition.
基金supported by the National Natural Science Foundation of China (Grant No. 51178115)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘To investigate the charring rate of timber beams exposed to three-side fire, a total of fifteen new and used Douglas-Fir timber beams in four groups exposed to three-side fire were experimentally studied, together with the finite element analyses of the temperature distribution in the beam section. The durations of fire exposure were 0 (on a test piece), 10, 15, 20 and 30 min, according to the ISO 834 standard fire curve. The charring depth of each timber beam was calculated by averaging the values at one-third and two-thirds along each cross section to give the charring rate of timber beams. It was found that the timber beam's charring rate reduces as the duration of fire exposure increases and the vertical charring rate is slightly higher than the horizontal one. The areas of beam sections reduce due to charring and the strength and stiffness of the pyrolysis layer near the charring edge decrease owing to the high-temperature. The average horizontal and vertical charring rates are 0.98 and 1.08 mm/min, respectively. To take into account the difference between the test furnace temperature curve and the ISO 834 stand- ard fire curve, some corrections were made for these data to yield the solution for charring rate. With the help of the finite element software ANSYS, the temperature distribution of the wood's cross-section was analyzed. The longer the exposure time is, the greater the effect of density will impose on the distribution of temperature, but the moisture content has no effect.
基金supported by the National Natural Science Foundation of China(51876080)the Program for Taishan Scholars of the Shandong Province Government。
文摘Biochar and bio-oil are produced simultaneously in one pyrolysis process,and they inevitably contact and may interact,influencing the composition of bio-oil and modifying the structure of biochar.In this sense,biochar is an inherent catalyst for pyrolysis.In this study,in order to investigate the influence of functionalities and pore structures of biochar on its capability for catalyzing the conversion of homologous volatiles in bio-oil,three char catalysts(600C,800C,and 800AC)produced via pyrolysis of poplar wood at 600 or 800℃or activated at 800℃,were used for catalyzing pyrolysis of homologous poplar wood at 600℃,respectively.The results indicated that the 600C catalyst was more active than 800C and 800AC for catalyzing cracking of volatiles to form more gas(yield increase by 40.2%)and aromatization of volatiles to form more light or heavy phenolics,due to its abundant oxygen-containing functionalities acting as active sites.The developed pores of the 800AC showed no such catalytic effect but could trap some volatiles and allow their further conversion via sufficient aromatization.Nevertheless,the interaction with the volatiles consumed oxygen on 600C(decrease by 50%),enhancing the aromatic degree and increasing thermal stability.The dominance of deposition of carbonaceous material of a very aromatic nature over 800C and 800AC resulted in net weight gain and blocked micropores but formed additional macropores.The in situ diffuse reflectance infrared Fourier transform spectroscopy characterization of the catalytic pyrolysis indicated superior activity of 600C for removal of -OH,while conversion of the intermediates bearing C=O was enhanced over all the char catalysts.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672089&11732002)the Natural Science Foundation of Heilongjiang Province,China(Grant No.A2017003)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2017017)
文摘Charring composites are widely used in the thermal protection system(TPS) to consume the intense aerodynamic heating during vehicle reentry. The ablation and thermal responses for the charring composites can be studied by using a numerical ablation model, in which the surface ablation and volume ablation could be taken into account. The coupling interactions among temperature, gas motion and interior pressure producing the pyrolysis gas could make the computation more complicated. A multi-physics model is developed to simulate the thermal response coupled with volume ablation and surface ablation. After studying four typical ablation cases, the model is validated, and then the heat transfer mechanisms in ablation are investigated. It is found that the viscous dissipation energy by the motion of pyrolysis gas can be neglected in the simulation. Also, the flow of pyrolysis gas plays an important role in the temperature response, especially under high heat flux condition.
基金This work was supported by the National NaturalScience Foundation of China (Grant Nos. 59936140 and 50006012).
文摘A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radiation caused by surface temperature rise and shrinkage of char surface are considered. Experimental device is designed specially for validating the reliability of the model. Effects of density of materials and heat radiation on pyrolysis of materials have also been investigated.
基金supported by CESAM by FCT/MCTES (UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020)and MED (UIDB/05183/2020)to FCT/MEC through national fundsthe co-funding by the FEDER,within the PT2020 Partnership Agreement and Compete 2020,and projects FIRECNUTS (PTDC/AGRCFL/104559/2008)+2 种基金CASCADE (ENV.2011.2.1.4-2/283068),which is funded by the European Unionthe FCT CEEC funding of Frank G.A.Verheijen (CEECIND/02509/2018),Sergio A.Prats (CEECIND/01473/2020),funded by national funds (OE)the SOILCOMBAT project (PTDC/EAM-AMB/0474/2020)through the Portuguese Foundation for Science and Technology (FCT/MCTES).
文摘Soil pedestals have long been used as qualitative indicators of soil splash erosion.In rangelands,plant-capped pedestals,generally grass tussocks,have also been used to quantitatively estimate soil loss since the first half of the twentieth century.In agricultural lands,forests,and bad-lands,stone-capped pedestals have been used as qualitative and semi-quantitative indicators of active,'extreme'erosion.Little work has been reported on using capstone pedestal data for quantifying soil loss.We postulate that three distinct capstone pedestal types may be present in any given location and that a detailed analysis of a pedestal height histogram may be used to recognize their populations.This analysis can subsequently inform if soil loss can be reliably estimated and if so,which of the existing methods using pedestal height data will provide more accurate results.The three proposed capstone pedestal types are:(1)neo-pedestals formed underneath surface stones exposed by(partial)removal of the soil surface cover;(2)endo-pedestals formed underneath stones that were buried in the soil but have been exposed by erosion;and(3)phoenix-pedestals formed underneath stones from collapsed pedestals.In the pedestal height histogram of any given location,a skew to smaller heights may indicate the existence of endo-and/or phoenix-pedestals,which may be revealed as a bi-(or tri)modal distribution when using a smaller bin size.This concept was applied to a case study where soil loss had been monitored for control plots and mulched plots during a 5-year period following wildfire in a eucalypt plantation.We measured pedestal heights and used methods to quantitatively assess soil loss from soil pedestal data in the available literature.Soil pedestal data at the end of the 5-year period under or overestimated soil loss in the control treatment,with results ranging from 60 to 115%of measured soil loss,depending on the method.It is postulated that phoenix-and endo-pedestals may be a driving factor behind the observed discrepancies.We discuss how future research may provide more insight into dominant processes,and how frequency distributions may be used to select the best methods for estimating soil loss from pedestals.
基金funded by the Research and Innovation Action project BIO4AFRICA implemented under European Union Funding for Research&Innovation,EU HORIZON 2020(Grant Agreement No.101000762)。
文摘In this article,we evaluated the energy performance parameters and gas emissions to identify which of the stoves studied performs best,and the biomass char briquettes with less emission.Biomass char briquettes from peanut shells,cashew nut shells,and corn cobs were produced using wheat flour as a binder.The binder rate was set at 9%and 10%.Based on the energy performance parameters,it was highlighted that the char briquette from corn cob with 9%binder(Char_CC_9%)has the best energy performance,followed by the char briquette from peanut shells with 9%binder(Char_PNS_9%),and lastly,the char briquette from cashew nut shells with 10%binder(Char_CNS_10%).The average energy efficiency of the“jambar”stove was 15.68%,while that of the“Malgache”stove was 12.41%.The average specific fuel consumption of the“jambar”stove was 0.12 kg of fuel per kilogram of water while that of the“Malgache”stove was 0.15 kg of fuel per kilogram of water.In terms of gaseous emissions,CO(carbon monoxide)concentrations were very high for char briquettes from corn cobs,with a CO emission factor of 0.40 g/min and NOx emission factor of 9.79 mg/min.For char briquettes from cashew nut shells,CO and NOx emission factors were respectively 0.30 g/min and 5.32 mg/min.The lowest average concentrations were obtained with char briquettes from peanut shells with a CO emission factor of 0.25 g/min and NOx 3.98 mg/min.
基金financially supported by the Youth Innovation Promotion Association CAS (2019448)Fundamental Research Funds for the Central Universities (WK2480000007)+1 种基金the Excellent Young Scientist Training Program of USTC (KY2320000018)USTC Tang Scholar, Youth Innovation cross-team fund project of Qinghai Salt Lake Research Institute (LJCTD-2022-3)。
文摘A phosphorus-containing flame retardant, aluminum hypophosphite(AHPi), has been modified by(3-aminopropyl) triethoxysilane(KH550) to prepare flame-retardant polystyrene(PS). The influence of modified AHPi on the morphology and characterization was investigated, and differences in flame retardant properties of the PS/AHPi and PS/modified AHPi were compared. The PS composite can pass the vertical burning tests(UL-94 standard) with a V-0 rating when the mass content of modified AHPi reaches20%, compared with the mass content of 25% AHPi. The element mapping of the PS composite shows that modified AHPi has better dispersion in PS than AHPi. Thermogravimetric analysis results indicated that adding modified AHPi can advance the initial decomposition temperature of the composite material.With the addition of modified AHPi, the decrease in peak heat release rate(p HRR) is more evident than AHPi, and the char yield of the resultant PS composites gradually increased. With the addition of 25%modified AHPi, the p HRR and total heat release of PS composites decreased by 81.4% and 37.6%. The modification of AHPi promoted its dispersion in the PS matrix and improved the char formation of PS composites. The results of real-time infrared spectrometry of PS composites, Fourier transform infrared spectra and X-ray photoelectron analysis of the char layer indicated that modified AHPi has flame retardancy in condensed and gas phases.
文摘Deep metric learning is one of the recommended methods for the challenge of supporting few/zero-shot learning by deep networks.It depends on building a Siamese architecture of two homogeneous Convolutional Neural Networks(CNNs)for learning a distance function that can map input data from the input space to the feature space.Instead of determining the class of each sample,the Siamese architecture deals with the existence of a few training samples by deciding if the samples share the same class identity or not.The traditional structure for the Siamese architecture was built by forming two CNNs from scratch with randomly initialized weights and trained by binary cross-entropy loss.Building two CNNs from scratch is a trial and error and time-consuming phase.In addition,training with binary crossentropy loss sometimes leads to poor margins.In this paper,a novel Siamese network is proposed and applied to few/zero-shot Handwritten Character Recognition(HCR)tasks.The novelties of the proposed network are in.1)Utilizing transfer learning and using the pre-trained AlexNet as a feature extractor in the Siamese architecture.Fine-tuning a pre-trained network is typically faster and easier than building from scratch.2)Training the Siamese architecture with contrastive loss instead of the binary cross-entropy.Contrastive loss helps the network to learn a nonlinear mapping function that enables it to map the extracted features in the vector space with an optimal way.The proposed network is evaluated on the challenging Chars74K datasets by conducting two experiments.One is for testing the proposed network in few-shot learning while the other is for testing it in zero-shot learning.The recognition accuracy of the proposed network reaches to 85.6%and 82%in few-and zero-shot learning respectively.In addition,a comparison between the performance of the proposed Siamese network and the traditional Siamese CNNs is conducted.The comparison results show that the proposed network achieves higher recognition results in less time.The proposed network reduces the training time from days to hours in both experiments.
基金Sponsored by the National Nature Science Foundation of China(50876091)
文摘Some ablation experiments of Ethylene-Propylene-Diene Monomer(EPDM)insulator were carried out in quasi-static low temperature gas environment,gas-phase environment,two-phase environment with Al2O3 grain and high concentration Al2O3 grain gas environments.Their charring ablation rate,thickness,surface morphology and main ingredient of the charring layer were analyzed.The experiment results show that the main influent factors for the charring ablation rate are the gas temperature,grain concentration and state of grain impact;the main influent factors for the charring layer thickness are the gas velocity and environment pressure;and the process of SiO2 migrating in the charring layer occur commonly in different gas environments.They provide a foundation for the ablation mechanism research and modeling of EPDM insulator.
文摘Coal contains a significant concentration of free radicals as a result of the coalification process. One of the experimental methods sensitive to the presence of radicals is electron spin resonance (ESR), and differences in ESR spectra for different macerals may provide insight into coal-forming processes. In this study, ESR data along with the H/C atomic ratio (to infer the aromatic fraction) are used to characterize coal samples with the aim of assessing a fire-origin for dominant inertinite macerals. A medium rank C bituminous Witbank No. 4 Seam Upper coal (the parent) was density- fractionated to create vitrinite-rich and inertinite-rich samples. The parent sample consists of 42 vol% vitrinite and 49 vol% inertinite. The density-fractionated samples comprise of 81 vol% total vitrinite (dominated by collotelinite and collodetrinite), and 63 vol% total inertinite (dominated by fusinite, semifusinite, and inertodetrinite). The H/C ratio is 0.74 for the inertinite-rich sample, and 0.85 for the vitrinite-rich counterpart, suggesting the former sample is more aromatic. The ESR spectra obtained for the three samples were found to fit best using a Lorentzian distribution. The fit is noticeably better for the aromatic inertinite-rich sample, for which the spectrum is symmetric. This is attributed to pronounced electron mobility and exchange interactions. The higher radical content of the inertinite-rich and parent samples is attributed to the presence of specific inertinite macerals, namely: fusinite, semifusinite, and inertodetrinite. And, owing to the greater radical content of the inertinite-rich sample, the dominant inertinite macerals are interpreted to have formed through charring of plant matter.
基金Sponsored by the National Nature Science Foundation of China(50976095)
文摘The instantaneous degradation of erosion surface of ethylene propylene diene monomer(EPDM)insulation subjected to the particle-laden flow in two operating conditions was measured by using a real-time X-ray radiography system.The images of its erosion state and dynamic ablation rate were obtained.And the charring-layer was analyzed by using SEM and energy spectrum.The experimental results indicate that the erosion rate of EPDM insulation layer impacted by low speed and low concentration particle flow is relatively small in the 1st second since the motor starting,but increases rapidly in 1 to 2.5 s,while the erosion rate of EPDM insulation layer impacted by high speed and high concentration particle flow increases rapidly in the 1st second;the ablation rate at the section eroded intensively by particle flow increases at first,then decreases,and goes to stabilization after 4.5 s;the higher speed and concentration particle flow are,the deeper particles get into charring layer,which lead to more thermal increment and thinner charring layer.
文摘The gross calorific values of crude and exhausted olive pomace, oak, almond, olive wood, olive oil, kerosene, and diesel are reported in this article. Conversion of crude olive pomace into exhausted olive pomace resulted in 10% reduction in calorific value. The net calorific value of crude olive pomace amounts to 92% of its gross calorific value. The ultimate and proximate analyses of crude olive pomace representing the 2006-2008 olive harvest seasons were determined and compared with analyses pertaining to the 2009-2011 olive harvest seasons in Jordan. Controlled charring of crude olive pomace reduced its mass down to about 20%. Pyrolysis thermogravimetric (TG) and differential thermogravimetric (DTG) curves were recorded under nitrogen atmosphere for crude olive pomace and wood samples. Quantitative data on three DTG major peaks are reported for wood samples and crude olive pomace. A comparison based on market price and calorific value of a fuel showed that olive pomace is the most rewarding fuel for domestic space heating in Jordan.