Some results from the theory of best (or best simultaneous) approximation in a narmed linear space have been extended to a normed almost linear space [strong normed almost linear space].
In this paper, both low order and high order extensions of the Iyengar type inequality are obtained. Such extensions are the best possible in the same sense as that of the Iyengar inequality. hzrthermore, the Chebyshe...In this paper, both low order and high order extensions of the Iyengar type inequality are obtained. Such extensions are the best possible in the same sense as that of the Iyengar inequality. hzrthermore, the Chebyshev central algorithms of integrals for some function classes and some related problems are also considered and investigated.展开更多
Let B (resp. K, BC,KC) denote the set of all nonempty bounded (resp. compact, bounded convex, compact convex) closed subsets of the Banach space X, endowed with the Hausdorff metric, and let G be a nonempty relati...Let B (resp. K, BC,KC) denote the set of all nonempty bounded (resp. compact, bounded convex, compact convex) closed subsets of the Banach space X, endowed with the Hausdorff metric, and let G be a nonempty relatively weakly compact closed subset of X. Let B° stand for the set of all F ∈B such that the problem (F, G) is well-posed. We proved that, if X is strictly convex and Kadec, the set KC ∩ B° is a dense Gδ-subset of KC / G. Furthermore, if X is a uniformly convex Banach space, we will prove more, namely that the set B /B° (resp. K / B°, BC /B°, KC / B°) is a-porous in B (resp. K,BC, KC). Moreover, we prove that for most (in the sense of the Baire category) closed bounded subsets G of X, the set K / B° is dense and uncountable in K.展开更多
文摘Some results from the theory of best (or best simultaneous) approximation in a narmed linear space have been extended to a normed almost linear space [strong normed almost linear space].
基金the Special Funds for Major State Basic Research Projects (Grant No.G19990328) National Science Foundation of China (Grant No.10471128)
文摘In this paper, both low order and high order extensions of the Iyengar type inequality are obtained. Such extensions are the best possible in the same sense as that of the Iyengar inequality. hzrthermore, the Chebyshev central algorithms of integrals for some function classes and some related problems are also considered and investigated.
基金supported in part by the National Natural Science Foundation of China(Grant No.10271025)supported in part by Projects BFM 2000-0344 and FQM-127 of Spain.
文摘Let B (resp. K, BC,KC) denote the set of all nonempty bounded (resp. compact, bounded convex, compact convex) closed subsets of the Banach space X, endowed with the Hausdorff metric, and let G be a nonempty relatively weakly compact closed subset of X. Let B° stand for the set of all F ∈B such that the problem (F, G) is well-posed. We proved that, if X is strictly convex and Kadec, the set KC ∩ B° is a dense Gδ-subset of KC / G. Furthermore, if X is a uniformly convex Banach space, we will prove more, namely that the set B /B° (resp. K / B°, BC /B°, KC / B°) is a-porous in B (resp. K,BC, KC). Moreover, we prove that for most (in the sense of the Baire category) closed bounded subsets G of X, the set K / B° is dense and uncountable in K.