A new algorithm called homotopy iteration method based on the homotopy function is studied and improved. By the improved homotopy iteration method, Polynomial systems with high Order and deficient can be solved fast a...A new algorithm called homotopy iteration method based on the homotopy function is studied and improved. By the improved homotopy iteration method, Polynomial systems with high Order and deficient can be solved fast and efficiently comparing to the original homotopy iteration method. Numerical examples for the ninepoint path synthesis of four-bar linkages show the advantages and efficiency of the improved homotopy iteration method.展开更多
For a spherical four-bar linkage,the maximum number of the spherical RR dyad(R:revolute joint)of five-orientation motion generation can be at most 6.However,complete real solution of this problem has seldom been st...For a spherical four-bar linkage,the maximum number of the spherical RR dyad(R:revolute joint)of five-orientation motion generation can be at most 6.However,complete real solution of this problem has seldom been studied.In order to obtain six real RR dyads,based on Strum's theorem,the relationships between the design parameters are derived from a 6th-degree univariate polynomial equation that is deduced from the constraint equations of the spherical RR dyad by using Dixon resultant method.Moreover,the Grashof condition and the circuit defect condition are taken into account.Given the relationships between the design parameters and the aforementioned two conditions,two objective functions are constructed and optimized by the adaptive genetic algorithm(AGA).Two examples with six real spherical RR dyads are obtained by optimization,and the results verify the feasibility of the proposed method.The paper provides a method to synthesize the complete real solution of the five-orientation motion generation,which is also applicable to the problem that deduces to a univariate polynomial equation and requires the generation of as many as real roots.展开更多
For the four-bar beating-up mechanism of air-jet loom,the plain bearing of linkage is the bearing with dynamic load,and is immersed in the lubricant-box.If the joint clearance is considered,the research on linkage mov...For the four-bar beating-up mechanism of air-jet loom,the plain bearing of linkage is the bearing with dynamic load,and is immersed in the lubricant-box.If the joint clearance is considered,the research on linkage movement could be very complicated.In this paper,the kinematic characteristics of four-bar beating-up mechanism with joint clearance were studied by analyzing the trace of journal center and the balance of radial,tangential forces,and bearing load.The region of principal vibration and its forming causes were discussed.And the results could interpret the measuring curves of four-bar beating-up mechanism completely.展开更多
In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuratio...In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuration unless it is exhausted. The artificial wing has to be able to maintain a fully unfolded configuration while flapping at a desirable flapping frequency. The artificial foldable hind wing developed in this work is based on two four-bar linkages which adapt the behaviors of the beetle's hind wing. The four-bar-linkages are designed to mimic rotational motion of the wing base and the vein folding/unfolding motion of the beetle's hind wing. The behavior of the artificial wings, which are installed in a flapping-wing system, is observed using a high-speed camera. The observation shows that the wing could maintain a fully unfolded configuration during flapping motion. A series of thrust measurements are also conducted to estimate the force generated by the flapping-wing system with foldable artificial wings. Although the artificial foldable wings give added burden to the flapping-wing system because of its weight, the thrust measurement results show that the flapping-wing system could still generate reasonable thrust.展开更多
Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural proper...Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural properties and filed application of backfill hydraulic support,this work has firstly proposed the basic principle of backfill hydraulic support optimization design and provided the method of optimal design of key structural components,like four-bar linkage,rear canopy and tamping structure;the method is further elaborated as changing hinging position of upper bar to optimize four-bar linkage,by lengthening or shortening the rear canopy to optimize length ratio of canopy;and by changing length and hinging position of tamping structure as well as suspension height of backfill scrape conveyor to realize optimization of tamping structure.On this basis,the process of optimal design of backfill hydraulic support is built.The optimal design case of ZC5200/14.5/30 six columns-four bar linkage used in 7203 W workface of Zhaizhen Coal Mine shows that the backfill properties like horizontal roof gap,vertical horizontal gap,tamping angle and tamping head gap are improved obviously through optimizing four-bar linkage,canopy length and tamping structure according to the optimal design method proposed in this work.展开更多
Planar kinematics has been studied systematically based on centrodes, however axodes are underutilized to set up the curvature theories in spherical and spatial kinematics. Through a spherical adjoint approach, an axo...Planar kinematics has been studied systematically based on centrodes, however axodes are underutilized to set up the curvature theories in spherical and spatial kinematics. Through a spherical adjoint approach, an axode-based theoretical system of spherical kinematics is established. The spherical motion is re-described by the adjoint approach and vector equation of spherical instant center is concisely derived. The moving and fixed axodes for spherical motion are mapped onto a unit sphere to obtain spherical centrodes, whose kinematic invariants totally reflect the intrinsic property of spherical motion. Based on the spherical centrodes, the curvature theories for a point and a plane of a rigid body in spherical motion are revealed by spherical fixed point and plane conditions. The Euler-Savary analogue for point-path is presented. Tracing points with higher order curvature features are located in the moving body by means of algebraic equations. For plane-envelope, the construction parameters are obtained. The osculating conditions for plane-envelope and circular cylindrical surface or circular conical surface are given. A spherical four-bar linkage is taken as an example to demonstrate the spherical adjoint approach and the curvature theories. The research proposes systematic spherical curvature theories with the axode as logical starting-point, and sets up a bridge from the centrode-based planar kinematics to the axode-based spatial kinematics.展开更多
A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without consi...A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.展开更多
The objective of this research is mainly focused on environment-friendly and moderately slow flapping wind turbine which can easily operate in or near urban areas or rooftops owing to scale merit with low-frequency tu...The objective of this research is mainly focused on environment-friendly and moderately slow flapping wind turbine which can easily operate in or near urban areas or rooftops owing to scale merit with low-frequency turbine noise, installation cost, avian mortality rate and safety consideration etc. The authors are focusing on lift based (LB) slow flapping wind turbine operated within a small attack angle amplitude whereas the previous research treated a lift and drag based (LDB) flapping turbine. Here, a unique trajectory for the wing motion was yet designed by using the Chebyshev dyad linkage mechanism as well as the previous report. The wind energy transferred to the mechanical rotation, adopting a single symmetric wing NACA0012. To obtain a smooth flapping motion for the blade, we optimize all fundamental parameters with our simulation model for optimum performance of the turbine. Both static and dynamic analysis has been conducted to confirm the feasibility of the present design. In addition, wind turbine performance was studied for a suitable range of free stream wind velocities. This report confirms that the developed flapping wind turbine can drive at slow speed with suitable energy extraction rate at different wind velocities. Moreover, we made a simple comparative study of the outcomes obtained from our previous lift and drag based flapping wind turbine with present one, i.e., lift based flapping turbine.展开更多
As one of transmission mechanisms,continuously variable transmission(CVT)can transfer energy depending upon rotation speed or torque generated by rotation power transferred from input axis to output axis.It is known t...As one of transmission mechanisms,continuously variable transmission(CVT)can transfer energy depending upon rotation speed or torque generated by rotation power transferred from input axis to output axis.It is known that the CVT is mechanism that can change gear ratios continuously in power transmission installed in vehicles,or power generation and its transfer systems.In this paper,we propose a CVT using a new type of mechanism in which four-bar linkages(quadric crank chains)and non-invertible elements such as one-way clutches or ratchets are installed.The conventional CVTs which are classified as belt-type CVTs or toroidal CVTs are driven by friction force between conduction mechanisms.Due to slippage or high-pressure between the transmission components in the conduction mechanism,the transfer efficiency in the conduction energy becomes inferior.However,the proposed CVT does not depend upon any friction forces,and it is considered that its transfer efficiency is superior.展开更多
文摘A new algorithm called homotopy iteration method based on the homotopy function is studied and improved. By the improved homotopy iteration method, Polynomial systems with high Order and deficient can be solved fast and efficiently comparing to the original homotopy iteration method. Numerical examples for the ninepoint path synthesis of four-bar linkages show the advantages and efficiency of the improved homotopy iteration method.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375059,61105103)National Hi-tech Research and Development Program of China(863 Program,Grant No.2011AA040203)Beijing Municipal Natural Science Foundation of China(Grant No.4132032)
文摘For a spherical four-bar linkage,the maximum number of the spherical RR dyad(R:revolute joint)of five-orientation motion generation can be at most 6.However,complete real solution of this problem has seldom been studied.In order to obtain six real RR dyads,based on Strum's theorem,the relationships between the design parameters are derived from a 6th-degree univariate polynomial equation that is deduced from the constraint equations of the spherical RR dyad by using Dixon resultant method.Moreover,the Grashof condition and the circuit defect condition are taken into account.Given the relationships between the design parameters and the aforementioned two conditions,two objective functions are constructed and optimized by the adaptive genetic algorithm(AGA).Two examples with six real spherical RR dyads are obtained by optimization,and the results verify the feasibility of the proposed method.The paper provides a method to synthesize the complete real solution of the five-orientation motion generation,which is also applicable to the problem that deduces to a univariate polynomial equation and requires the generation of as many as real roots.
文摘For the four-bar beating-up mechanism of air-jet loom,the plain bearing of linkage is the bearing with dynamic load,and is immersed in the lubricant-box.If the joint clearance is considered,the research on linkage movement could be very complicated.In this paper,the kinematic characteristics of four-bar beating-up mechanism with joint clearance were studied by analyzing the trace of journal center and the balance of radial,tangential forces,and bearing load.The region of principal vibration and its forming causes were discussed.And the results could interpret the measuring curves of four-bar beating-up mechanism completely.
文摘In this work, we develop an artificial foldable wing that mimics the hind wing of a beetle (Allomyrina dichotoma). In real flight, the beetle unfolds forewings and hind wings, and maintains the unfolded configuration unless it is exhausted. The artificial wing has to be able to maintain a fully unfolded configuration while flapping at a desirable flapping frequency. The artificial foldable hind wing developed in this work is based on two four-bar linkages which adapt the behaviors of the beetle's hind wing. The four-bar-linkages are designed to mimic rotational motion of the wing base and the vein folding/unfolding motion of the beetle's hind wing. The behavior of the artificial wings, which are installed in a flapping-wing system, is observed using a high-speed camera. The observation shows that the wing could maintain a fully unfolded configuration during flapping motion. A series of thrust measurements are also conducted to estimate the force generated by the flapping-wing system with foldable artificial wings. Although the artificial foldable wings give added burden to the flapping-wing system because of its weight, the thrust measurement results show that the flapping-wing system could still generate reasonable thrust.
基金Project(2017QNA21)supported by the Fundamental Research Funds for the Central Universities of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Backfill hydraulic support is the key equipment in achieving coal mining and solid backfilling simultaneously in solid backfill mining technology.Based on the summary and analysis of main types,basic structural properties and filed application of backfill hydraulic support,this work has firstly proposed the basic principle of backfill hydraulic support optimization design and provided the method of optimal design of key structural components,like four-bar linkage,rear canopy and tamping structure;the method is further elaborated as changing hinging position of upper bar to optimize four-bar linkage,by lengthening or shortening the rear canopy to optimize length ratio of canopy;and by changing length and hinging position of tamping structure as well as suspension height of backfill scrape conveyor to realize optimization of tamping structure.On this basis,the process of optimal design of backfill hydraulic support is built.The optimal design case of ZC5200/14.5/30 six columns-four bar linkage used in 7203 W workface of Zhaizhen Coal Mine shows that the backfill properties like horizontal roof gap,vertical horizontal gap,tamping angle and tamping head gap are improved obviously through optimizing four-bar linkage,canopy length and tamping structure according to the optimal design method proposed in this work.
基金Supported by National Natural Science Foundation of China (Grant No.51275067)
文摘Planar kinematics has been studied systematically based on centrodes, however axodes are underutilized to set up the curvature theories in spherical and spatial kinematics. Through a spherical adjoint approach, an axode-based theoretical system of spherical kinematics is established. The spherical motion is re-described by the adjoint approach and vector equation of spherical instant center is concisely derived. The moving and fixed axodes for spherical motion are mapped onto a unit sphere to obtain spherical centrodes, whose kinematic invariants totally reflect the intrinsic property of spherical motion. Based on the spherical centrodes, the curvature theories for a point and a plane of a rigid body in spherical motion are revealed by spherical fixed point and plane conditions. The Euler-Savary analogue for point-path is presented. Tracing points with higher order curvature features are located in the moving body by means of algebraic equations. For plane-envelope, the construction parameters are obtained. The osculating conditions for plane-envelope and circular cylindrical surface or circular conical surface are given. A spherical four-bar linkage is taken as an example to demonstrate the spherical adjoint approach and the curvature theories. The research proposes systematic spherical curvature theories with the axode as logical starting-point, and sets up a bridge from the centrode-based planar kinematics to the axode-based spatial kinematics.
基金National Natural Science Foundation of China(No.51175475)Natural Science Foundation of Zhejiang Province,China(No.LY14E050027)
文摘A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.
文摘The objective of this research is mainly focused on environment-friendly and moderately slow flapping wind turbine which can easily operate in or near urban areas or rooftops owing to scale merit with low-frequency turbine noise, installation cost, avian mortality rate and safety consideration etc. The authors are focusing on lift based (LB) slow flapping wind turbine operated within a small attack angle amplitude whereas the previous research treated a lift and drag based (LDB) flapping turbine. Here, a unique trajectory for the wing motion was yet designed by using the Chebyshev dyad linkage mechanism as well as the previous report. The wind energy transferred to the mechanical rotation, adopting a single symmetric wing NACA0012. To obtain a smooth flapping motion for the blade, we optimize all fundamental parameters with our simulation model for optimum performance of the turbine. Both static and dynamic analysis has been conducted to confirm the feasibility of the present design. In addition, wind turbine performance was studied for a suitable range of free stream wind velocities. This report confirms that the developed flapping wind turbine can drive at slow speed with suitable energy extraction rate at different wind velocities. Moreover, we made a simple comparative study of the outcomes obtained from our previous lift and drag based flapping wind turbine with present one, i.e., lift based flapping turbine.
文摘As one of transmission mechanisms,continuously variable transmission(CVT)can transfer energy depending upon rotation speed or torque generated by rotation power transferred from input axis to output axis.It is known that the CVT is mechanism that can change gear ratios continuously in power transmission installed in vehicles,or power generation and its transfer systems.In this paper,we propose a CVT using a new type of mechanism in which four-bar linkages(quadric crank chains)and non-invertible elements such as one-way clutches or ratchets are installed.The conventional CVTs which are classified as belt-type CVTs or toroidal CVTs are driven by friction force between conduction mechanisms.Due to slippage or high-pressure between the transmission components in the conduction mechanism,the transfer efficiency in the conduction energy becomes inferior.However,the proposed CVT does not depend upon any friction forces,and it is considered that its transfer efficiency is superior.