In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples...In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.展开更多
The removal processes of major seawater chemical constituents in the Bohai Sea include seawater ex-change between the Bohai Sea and the Northern Yellow Sea,cation exchange,interstitial water burialand spray,formation ...The removal processes of major seawater chemical constituents in the Bohai Sea include seawater ex-change between the Bohai Sea and the Northern Yellow Sea,cation exchange,interstitial water burialand spray,formation of illite,sepiolite,sulfate and sulfur,and carbonates.The mass balance calculationbased on these processes is very applicable to the Bohai Sea.展开更多
Because of the almast enclosed nature of the Bohai Sea, rivers are considered as the sources of the major seawater chemical constituents there. The annual quantities of river-derived solutes and solids in Bohai Sea wa...Because of the almast enclosed nature of the Bohai Sea, rivers are considered as the sources of the major seawater chemical constituents there. The annual quantities of river-derived solutes and solids in Bohai Sea water are accurately calculated in this paper.展开更多
Particulate matter (PM) emissions from animal feeding operations (AFOs) have been considered as an important contributor to ambient PM in rural areas. Investigation of the chemical compositions of PM2.5 inside and in ...Particulate matter (PM) emissions from animal feeding operations (AFOs) have been considered as an important contributor to ambient PM in rural areas. Investigation of the chemical compositions of PM2.5 inside and in the vicinity of AFOs can enhance our understanding of the AFO emissions impact on ambient PM characteristics. This year-long field study was conducted on a commercial egg production farm to investigate ambient PM chemical compositions as impacted by the air emissions from the production houses. The PM2.5 samples were collected from five sampling stations (one in-house station and four ambient locations in four wind directions). The trace elements, major ions, organic carbon (OC) and element carbon (EC) were analyzed by X-ray florescence (XRF), ion chromatography (IC), and thermo-optical analyzer, respectively. There were significant differences in elemental compositions between PM samples from in-house station (ST1) and ambient stations (ST2-ST5). The chemical mass balance analysis revealed that OC accounted for above 50% of PM2.5 mass at in-house and ambient stations;NH4+, SO42-, and NO3- accounted for about 40.0% of the total PM2.5 mass in ambient locations and for only 12% of the total PM2.5 mass in house. The measured PM2.5 masses agreed with the sums of the masses of chemical compositions at all stations except for the in-house station. Knowledge gained from this study, with additional consideration of NH3 concentrations and emissions, will lead to better understanding of PM2.5 source and formation, fate and transport, and their atmospheric dynamics.展开更多
The source apportionment of PM2.5 is essential for pollution prevention.In view of the weaknesses of individual models,we proposed an integrated chemical mass balancesource emission inventory(CMB-SEI)model to acquire ...The source apportionment of PM2.5 is essential for pollution prevention.In view of the weaknesses of individual models,we proposed an integrated chemical mass balancesource emission inventory(CMB-SEI)model to acquire more accurate results.First,the SEI of secondary component precursors(SO2,NOx,NH3,and VOCs)was compiled to acquire the emission ratios of these sources for the precursors.Then,a regular CMB simulation was executed to obtain the contributions of primary particle sources and secondary components(SO4^2-,NO3^-3,NH4^+,and SOC).Afterwards,the contributions of secondary components were apportioned into primary sources according to the source emission ratios.The final source apportionment results combined the contributions of primary sources by CMB and SEI.This integrated approach was carried out via a case study of three coastal cities(Zhoushan,Taizhou,and Wenzhou;abbreviated WZ,TZ,and ZS)in Zhejiang Province,China.The regular CMB simulation results showed that PM2.5 pollution was mainly affected by secondary components and mobile sources.The SEI results indicated that electricity,industrial production and mobile sources were the largest contributors to the emission of PM2.5 gaseous precursors.The simulation results of the CMB-SEI model showed that PM2.5 pollution in the coastal areas of Zhejiang Province presented complex pollution characteristics dominated by mobile sources,electricity production sources and industrial production sources.Compared to the results of the CMB and SEI models alone,the CMB-SEI model completely apportioned PM2.5 to primary sources and simultaneously made the results more accurate and reliable in accordance with local industrial characteristics.展开更多
In this paper,the previously proposed second-order process-based modified Patankar Runge-Kutta schemes are extended to the third order of accuracy.Owing to the process-based implicit handling of reactive source terms,...In this paper,the previously proposed second-order process-based modified Patankar Runge-Kutta schemes are extended to the third order of accuracy.Owing to the process-based implicit handling of reactive source terms,the mass conservation,mole balance and energy conservation are kept simultaneously while the positivity for the density and pressure is preserved unconditionally even with stiff reaction networks.It is proved that the first-order truncation terms for the Patankar coefficients must be zero to achieve a prior third order of accuracy for most cases.A twostage Patankar procedure for each Runge-Kutta step is designed to eliminate the first-order truncation terms,accomplish the prior third order of accuracy and maximize the Courant number which the total variational diminishing property requires.With the same approach as the second-order schemes,the third-order ones are applied to Euler equations with chemical reactive source terms.Numerical studies including both 1D and 2D ordinary and partial differential equations are conducted to affirm both the prior order of accuracy and the positivity-preserving property for the density and pressure.展开更多
基金Supported by the Natural Basic Research Program of China(No.2005CB422207)the Fund of Eco-enviromental Impacts and Protection in Devoloping and Utilizing of Oil-shale Resources(No.OSR-01-06)
文摘In order to identify the day and night pollution sources of PM10 in ambient air in Longyan City,the authors analyzed the elemental composition of respirable particulate matters in the day and night ambient air samples and various pollution sources which were collected in January 2010 in Longyan with inductivity coupled plasma-mass spectrometry(ICP-MS).Then chemical mass balance(CMB) model and factor analysis(FA) method were applied to comparatively study the inorganic components in the sources and receptor samples.The results of factor analysis show that the major sources were road dust,waste incineration and mixed sources which contained automobile exhaust,soil dust/secondary dust and coal dust during the daytime in Longyan City,China.There are two major sources of pollution which are soil dust and mixture sources of automobile exhaust and secondary dust during the night in Longyan.The results of CMB show that the major sources are secondary dust,automobile exhaust and road dust during the daytime in Longyan.The major sources are secondary dust,soil dust and automobile exhaust during the night in Longyan.The results of the two methods are similar to each other and the results will guide us to plan to control the PM10 pollution sources in Longyan.
文摘The removal processes of major seawater chemical constituents in the Bohai Sea include seawater ex-change between the Bohai Sea and the Northern Yellow Sea,cation exchange,interstitial water burialand spray,formation of illite,sepiolite,sulfate and sulfur,and carbonates.The mass balance calculationbased on these processes is very applicable to the Bohai Sea.
文摘Because of the almast enclosed nature of the Bohai Sea, rivers are considered as the sources of the major seawater chemical constituents there. The annual quantities of river-derived solutes and solids in Bohai Sea water are accurately calculated in this paper.
文摘Particulate matter (PM) emissions from animal feeding operations (AFOs) have been considered as an important contributor to ambient PM in rural areas. Investigation of the chemical compositions of PM2.5 inside and in the vicinity of AFOs can enhance our understanding of the AFO emissions impact on ambient PM characteristics. This year-long field study was conducted on a commercial egg production farm to investigate ambient PM chemical compositions as impacted by the air emissions from the production houses. The PM2.5 samples were collected from five sampling stations (one in-house station and four ambient locations in four wind directions). The trace elements, major ions, organic carbon (OC) and element carbon (EC) were analyzed by X-ray florescence (XRF), ion chromatography (IC), and thermo-optical analyzer, respectively. There were significant differences in elemental compositions between PM samples from in-house station (ST1) and ambient stations (ST2-ST5). The chemical mass balance analysis revealed that OC accounted for above 50% of PM2.5 mass at in-house and ambient stations;NH4+, SO42-, and NO3- accounted for about 40.0% of the total PM2.5 mass in ambient locations and for only 12% of the total PM2.5 mass in house. The measured PM2.5 masses agreed with the sums of the masses of chemical compositions at all stations except for the in-house station. Knowledge gained from this study, with additional consideration of NH3 concentrations and emissions, will lead to better understanding of PM2.5 source and formation, fate and transport, and their atmospheric dynamics.
基金supported by the National Key Research and Development Program of China(No.2018YFC0214102)。
文摘The source apportionment of PM2.5 is essential for pollution prevention.In view of the weaknesses of individual models,we proposed an integrated chemical mass balancesource emission inventory(CMB-SEI)model to acquire more accurate results.First,the SEI of secondary component precursors(SO2,NOx,NH3,and VOCs)was compiled to acquire the emission ratios of these sources for the precursors.Then,a regular CMB simulation was executed to obtain the contributions of primary particle sources and secondary components(SO4^2-,NO3^-3,NH4^+,and SOC).Afterwards,the contributions of secondary components were apportioned into primary sources according to the source emission ratios.The final source apportionment results combined the contributions of primary sources by CMB and SEI.This integrated approach was carried out via a case study of three coastal cities(Zhoushan,Taizhou,and Wenzhou;abbreviated WZ,TZ,and ZS)in Zhejiang Province,China.The regular CMB simulation results showed that PM2.5 pollution was mainly affected by secondary components and mobile sources.The SEI results indicated that electricity,industrial production and mobile sources were the largest contributors to the emission of PM2.5 gaseous precursors.The simulation results of the CMB-SEI model showed that PM2.5 pollution in the coastal areas of Zhejiang Province presented complex pollution characteristics dominated by mobile sources,electricity production sources and industrial production sources.Compared to the results of the CMB and SEI models alone,the CMB-SEI model completely apportioned PM2.5 to primary sources and simultaneously made the results more accurate and reliable in accordance with local industrial characteristics.
基金This work was supported by the National Natural Science Foundation of China(No.12102211)the Science and Technology Innovation 2025 Major Project of Ningbo,China(No.2022Z213).
文摘In this paper,the previously proposed second-order process-based modified Patankar Runge-Kutta schemes are extended to the third order of accuracy.Owing to the process-based implicit handling of reactive source terms,the mass conservation,mole balance and energy conservation are kept simultaneously while the positivity for the density and pressure is preserved unconditionally even with stiff reaction networks.It is proved that the first-order truncation terms for the Patankar coefficients must be zero to achieve a prior third order of accuracy for most cases.A twostage Patankar procedure for each Runge-Kutta step is designed to eliminate the first-order truncation terms,accomplish the prior third order of accuracy and maximize the Courant number which the total variational diminishing property requires.With the same approach as the second-order schemes,the third-order ones are applied to Euler equations with chemical reactive source terms.Numerical studies including both 1D and 2D ordinary and partial differential equations are conducted to affirm both the prior order of accuracy and the positivity-preserving property for the density and pressure.