期刊文献+
共找到466篇文章
< 1 2 24 >
每页显示 20 50 100
Comparative analysis of microstructure,mechanical,and corrosion properties of biodegradable Mg-3Y alloy prepared by selective laser melting and spark plasma sintering
1
作者 P.Minárik M.Zemková +6 位作者 S.Šašek J.Dittrich M.Knapek F.Lukáˇc D.Koutný J.Jaroš R.Král 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1496-1510,共15页
This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was conso... This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was consolidated by both methods utilising optimised parameters,which led to very low porosity(∼0.3%)in the SLM material and unmeasurably low porosity in the SPS material.The main aim of the study was the thorough microstructure characterisation and interrelation between the microstructure and the functional properties,such as mechanical strength,deformability,and corrosion resistance.Both materials showed comparable strength of∼110 MPa in tension and compression and relatively good deformability of∼9%and∼21%for the SLM and SPS materials,respectively.The corrosion resistance of the SPS material in 0.1 M NaCl solution was superior to the SLM one and comparable to the conventional extruded material.The digital image correlation during loading and the cross-section analysis of the corrosion layers revealed that the residual porosity and large strained grains have the dominant negative effect on the functional properties of the SLM material.On the other hand,one of the primary outcomes of this study is that the SPS consolidation method is very effective in the preparation of the W3 biodegradable alloy,resulting in material with convenient mechanical and degradation properties that might find practical applications. 展开更多
关键词 Magnesium YTTRIUM Powder metallurgy MICROSTRUCTURE mechanical strength corrosion resistance
下载PDF
Enhanced Hoek-Brown(H-B)criterion for rocks exposed to chemical corrosion
2
作者 Hao Li Leo Pel +1 位作者 Zhenjiang You David Smeulders 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期609-630,共22页
Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks ... Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks becomes essential in the stability analysis and design of such structures.This study enhances the applicability of the Hoek-Brown(H-B)criterion for engineering structures operating in chemically corrosive conditions by introducing a kinetic porosity-dependent instantaneous mi(KPIM).A multiscale experimental investigation,including nuclear magnetic resonance(NMR),X-ray diffraction(XRD),scanning electron microscopy(SEM),pH and ion chromatography analysis,and triaxial compression tests,is employed to quantify pore structural changes and their linkage with the strength responses of limestone under coupled chemical-mechanical(C-M)conditions.By employing ion chromatography and NMR analysis,along with incorporating the principles of free-face dissolution theory accounting for both congruent and incongruent dissolution,a kinetic chemical corrosion model is developed.This model aims to calculate the kinetic porosity alterations within rocks exposed to varying H+concentrations and durations.Subsequently,utilizing the generalized mixture rule(GMR),the kinetic porositydependent mi is formulated.Evaluation of the KPIM-enhanced H-B criterion using compression test data from 5 types of rocks demonstrated a high level of consistency between the criterion and the experimental results,with a coefficient of determination greater than 0.96,a mean absolute percentage error less than 4.84%,and a root-mean-square deviation less than 5.95 MPa.Finally,the physical significance of the porosity-dependent instantaneous mi is clarified:it serves as an indicator of a rock’s capacity to leverage the confining pressure effect. 展开更多
关键词 Hoek-Brown(H-B)criterion Instantaneous mi Kinetic porosity-dependency chemical corrosion Compressive strength
下载PDF
Study of galvanic corrosion and mechanical joint properties of AZ31B and carbon-fiber–reinforced polymer joined by friction self-piercing riveting 被引量:2
3
作者 Yong Chae Lim Jiheon Jun +4 位作者 Donovan N.Leonard Yuan Li Jian Chen Michael P.Brady Zhili Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第2期434-445,共12页
A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ... A new testing methodology was developed to quantitively study galvanic corrosion of AZ31B and thermoset carbon-fiber–reinforced polymer spot-joined by a friction self-piercing riveting process.Pre-defined areas of AZ31B in the joint were exposed in 0.1 M NaCl solution over time.Massive galvanic corrosion of AZ31B was observed as exposure time increased.The measured volume loss was converted into corrosion current that was at least 48 times greater than the corrosion current of AZ31B without galvanic coupling.Ninety percent of the mechanical joint integrity was retained for corroded F-SPR joints to 200 h and then decreased because of the massive volume loss of AZ31B。 展开更多
关键词 Multi-material joining Carbon fiber–reinforced polymer AZ31B Friction self-piercing riveting Galvanic corrosion mechanical joint strength
下载PDF
Individual effect of Y and Nd on the microstructure formation of Mg-Y-Nd alloys processed by severe plastic deformation and their effect on the subsequent mechanical and corrosion properties 被引量:1
4
作者 Maria Zemkova Peter Minarik +2 位作者 Jan Dittrich Jan Bohlen Robert Kral 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期509-521,共13页
This work investigated the effect of sole yttrium and neodymium alloying on the microstructure formation during severe plastic deformation by equal channel angular pressing(ECAP) and an impact on the mechanical streng... This work investigated the effect of sole yttrium and neodymium alloying on the microstructure formation during severe plastic deformation by equal channel angular pressing(ECAP) and an impact on the mechanical strength and corrosion resistance of binary Mg-3Y and Mg-3Nd alloys.The results are compared with a ternary Mg-4Y-3Nd alloy,which represents a simplified version of the commercially successful WE43 alloy.The extensive study comprises a thorough microstructural analysis performed by scanning and transmission electron microscopy,including electron backscatter diffraction and texture analysis performed by X-ray diffraction.It is shown that the presence of Nd primarily caused precipitation during the processing of the Mg-3Nd alloy,while Y remained dissolved in the magnesium matrix in the Mg-3Y alloy.This difference resulted in a significantly smaller average grain size in the Mg-3Y alloy(~0.77 nm) than in the Mg-3Nd alloy(~1.3 μm) after the final step of the processing and formation of a slightly different texture.Consequently,the composition and the processing affected the mechanical and corrosion properties of the investigated materials,measured by compression deformation tests,microhardness measurement,and electrochemical impedance spectroscopy.This study shows that the ECAP-processed W3 sample exhibits a surprisingly good combination of ultrafine-grain structure,weak crystallographic texture,high strength,and high corrosion resistance compared with the other investigated samples.These attributes make this material very interesting for utilisation in the industry and/or medicine. 展开更多
关键词 MAGNESIUM Rare earth elements MICROSTRUCTURE Texture mechanical strength corrosion
下载PDF
Fabrication and Characterization of Tungsten Heavy Alloys Using Chemical Reduction and Mechanical Alloying Methods 被引量:1
5
作者 Zeinab Abdel Hamid Sayed Farag Moustafa +2 位作者 Walid Mohamed Daoush Fatema Abdel Mouez Mona Hassan 《Open Journal of Applied Sciences》 2013年第1期15-27,共13页
A novel reduction technique has been developed to synthesize nano-sized tungsten heavy alloys powders and compared with the same powders processed by mechanical alloying technique. In the first method, nano-sized tung... A novel reduction technique has been developed to synthesize nano-sized tungsten heavy alloys powders and compared with the same powders processed by mechanical alloying technique. In the first method, nano-sized tungsten heavy alloys powders have been obtained by reduction of precursors obtained by spray drying of several appropriate aqueous solutions, which were made from salts containing tungsten, cobalt, and nickel. By adjusting the stoichiometry of the component of the solutions, it is possible to obtain the desired chemical composition of the tungsten heavy alloys powders. In the second method, highly pure elemental powders of tungsten heavy alloys have been mechanically alloyed in a tumbler ball mill for different milling time. The investigated tungsten heavy alloy powders with the composition (95%W-3.5%Ni-1.5%Fe), (93%W-4.5%Ni-1.0%Fe-1.5%Co), and (90%W-6%Ni-4%Cu) have been prepared using both methods. The prepared powders have been compacted at 70 bar (200 MPa) and sintered in vacuum furnace at 1400℃. Vacuum sintering was carried out to achieve full densification of the produced tungsten heavy alloys. The investigated materials were going to be evaluated the physical and mechanical properties of the sintered parts such as density;electrical conductivity, hardness, and transverse rupture strength. The results reveal that, the grain size of alloys fabricated by chemical reduction technique (53.1 - 63.8 nm) is smaller than that fabricated by mechanical alloying technique (56.4 - 71.4 nm). 展开更多
关键词 TUNGSTEN Heavy Alloys mechanical ALLOYING chemical Reduction Powder METALLURGY Hardness TRANSVERSE RUPTURE strength Conductivity
下载PDF
Comparative Study of Chemically and Mechanically Activated Clay Pozzolana
6
作者 James Sarfo-Ansah Eugene Atiemo +1 位作者 Kwabena Appiah Boakye Zsuzsanne Momade 《Materials Sciences and Applications》 2014年第2期86-94,共9页
Burnt clay pozzolana produced from a clay deposit at Mankranso in Ghana has been activated by mechanical means through roll milling and ball milling as well as chemically by the addition of 1% - 4% m/m Na2SO4. The poz... Burnt clay pozzolana produced from a clay deposit at Mankranso in Ghana has been activated by mechanical means through roll milling and ball milling as well as chemically by the addition of 1% - 4% m/m Na2SO4. The pozzolana sample was chemically suitable with total SiO2 + Al2O3 + Fe2O3 content ≥70% as stipulated by the ASTM C 618 standard. The particle sizes, surface characteristics and specific surface areas obtained by the types/degrees of milling were analyzed and their effect on the strength development of Portland pozzolana cement mortar cubes prepared from the pozzolana samples was evaluated. Compressive strengths obtained showed that the activated pozzolana could be used to replace up to 40% ordinary Portland cement (OPC) and satisfy the EN 197-1 and ASTM C 595 standard requirements. Comparatively, the chemically activated pozzolana cement mortars attained higher compressive strengths than the mechanically activated pozzolana cement mortars at equal ages of tests and the same pozzolana content levels. The chemically activated pozzolana cement mortars attained higher 2 day strengths than OPC at sulphate concentrations of 3% and 4% for all pozzolana content levels between 30% - 40%. SEM image and insoluble residue in HCl of a 2 day old chemically activated pozzolana cement paste confirmed dissolution of fine pozzolana particles in the alkaline media which influenced higher early age strengths. The highest 28 day compressive strength of 54.2 MPa was obtained at 4% sulphate concentration and 30% pozzolana content for the chemically activated pozzolana. The highest 28 days compressive strength for the mechanically activated pozzolana was 35.6 MPa—obtained for the roll milled product at 30% pozzolana content. Standard consistence of the pozzolana cement pastes increased with increasing pozzolana fineness and pozzolana content. Increasing Na2SO4 concentration however had no effect on standard consistence. Setting times decreased with increase in both fineness and sulphate concentration. The EN 197-1 standard for initial setting time was satisfied by the chemically activated pozzolana cement mortars at all pozzolana content levels. Pozzolana samples activated by roll milling and 36 h ball milling had faster initial setting times than the EN 196-1 standard at all pozzolana content levels beyond 30%. The ASTM C 595 requirement for initial set was however satisfied at all pozzolana content levels. 展开更多
关键词 POZZOLANA CEMENT mechanical ACTIVATION chemical ACTIVATION COMPRESSIVE strength SETTING Time
下载PDF
Microstructures and electrochemical behaviors of casting magnesium alloys with enhanced compression strengths and decomposition rates
7
作者 Xuewu Li Qingyuan Yu +1 位作者 Xi Chen Qiaoxin Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1213-1223,共11页
New-type magnesium alloy with prominent solubility and mechanical property lays foundation for preparing fracturing part in petroleum extraction.Herein,Mg-xZn-Zr-SiC alloy is prepared with casting strategy.Electrochem... New-type magnesium alloy with prominent solubility and mechanical property lays foundation for preparing fracturing part in petroleum extraction.Herein,Mg-xZn-Zr-SiC alloy is prepared with casting strategy.Electrochemical and compression tests are conducted to assess the feasibility as decomposable material.Morphology,composition,phase and distribution are characterized to investigate decomposition mechanism.Results indicate that floccule,substrate component and reticulate secondary phase are formed on as-prepared surface.Sample also acts out enhanced compression strength to maintain pressure and guarantee stability in dissolution process.Furthermore,as decomposition time and zinc content increase,couple corrosion intensifies,resulting in gradually enhanced decomposition rate.Rapid sample decomposition is mainly due to basal anode dissolution,micro particle exfoliation and poor decomposition resistance of corroding product.Such work shows profound significance in preparing new-type accessible alloy to ensure rapid dissolution of fracturing part and guarantee stable compression strength in oil-gas reservoir exploitation. 展开更多
关键词 Magnesium alloy corrosion dissolution Compression strength Electrochemical test Decomposition mechanism
下载PDF
Resistance to chemical attack of bittern-resisting cement in high-bittern environment 被引量:1
8
作者 Yunbing Hou Bingwen Wang Yu Chen Botao Zhang Lin Yu 《Journal of University of Science and Technology Beijing》 CSCD 2005年第5期469-475,共7页
A new kind of bittern-resisting cement (BRC) was introduced. This material is based on the ternary cementitious system of clinker containing C4A3 S phase, high-activity ground granulated blast-furnace slag (GGBFS)... A new kind of bittern-resisting cement (BRC) was introduced. This material is based on the ternary cementitious system of clinker containing C4A3 S phase, high-activity ground granulated blast-furnace slag (GGBFS) and fly ash (FA). The hydration process and the hydrated products of BRC were studied by means of XRD, TG-DTA and SEM, and the resistance to chemical attack of BRC in high-bittern environment was also examined. The corrosion experiment in seven kinds of brines proved that BRC exhibits an excellent resistance to chemical attack of bittern. The corrosion resistance factors were calculated and all of them were greater than 0.96. It showed that BRC totally controls the cement-based material corrosion in brines from four aspects: (1) making full use of the dominant complementation effect of mineral materials; (2) diminishing the hydrated products easy to be attacked; (3) improving the microstructure of hardened cement mortar; (4) degrading the chemical attack of bittern. 展开更多
关键词 bittern-resisting cement ternary cementitious system high-activity mineral materials resistance to chemical attack BITTERN corrosion resistance factor corrosion mechanism
下载PDF
Quantifying the Mechanical Properties of White Sandstone Based on Computer Fractal Theory 被引量:1
9
作者 Yong Wang Yongyan Wang +3 位作者 Nan Qin Sa Huang Le Chang Shunzheng Hou 《Computer Systems Science & Engineering》 SCIE EI 2021年第10期121-131,共11页
The work presented in this paper was conducted to quantify the relationship between the pore characteristics and mechanical properties of white sandstone.The study include tests carried out under the coupling effects ... The work presented in this paper was conducted to quantify the relationship between the pore characteristics and mechanical properties of white sandstone.The study include tests carried out under the coupling effects of chemical corrosion,temperature,nuclear magnetic resonance,and mechanical tests.Computer fractal theory was employed to describe and quantify the characteristics of the growth of pores in white sandstone under the same coupling effect.A custom developed program code,in the MATLAB software platform,was used for calculating the growths of the pores in white sandstone when subjected to coupling effects.The correlation between the computer fractal dimension of the growth of the pores in rock and characteristics of mechanical damage was accordingly analyzed.The results showed that when the temperature was set at a level lower than 100°C,it caused damage to the rock and strength reduction,primarily due to the rates of chemical reactions,the generation,and evolution of pores in the rock mass under the coupling effects of chemical corrosion and temperature.Overall,it was observed that the higher the value of the computer fractal dimension,the higher the growth of the pores,and the lower the uniaxial compressive strength of the white sandstone. 展开更多
关键词 White sandstone pore characteristics mechanical properties MATLAB chemical corrosion TEMPERATURE fractal dimension nuclear magnetic resonance
下载PDF
Two material removal modes in chemical mechanical polishing:mechanical plowing vs.chemical bonding 被引量:1
10
作者 Yuan WU Liang JIANG +3 位作者 Wenhui LI Jiaxin ZHENG Yushan CHEN Linmao QIAN 《Friction》 SCIE EI CAS CSCD 2024年第5期897-905,共9页
With the rapid development of semiconductors,the number of materials needed to be polished sharply increases.The material properties vary significantly,posing challenges to chemical mechanical polishing(CMP).According... With the rapid development of semiconductors,the number of materials needed to be polished sharply increases.The material properties vary significantly,posing challenges to chemical mechanical polishing(CMP).Accordingly,the study aimed to classify the material removal mechanism.Based on the CMP and atomic force microscopy results,the six representative metals can be preliminarily classified into two groups,presumably due to different material removal modes.From the tribology perspective,the first group of Cu,Co,and Ni may mainly rely on the mechanical plowing effect.After adding H_(2)O_(2),corrosion can be first enhanced and then suppressed,affecting the surface mechanical strength.Consequently,the material removal rate(MRR)and the surface roughness increase and decrease.By comparison,the second group of Ta,Ru,and Ti may primarily depend on the chemical bonding effect.Adding H_(2)O_(2)can promote oxidation,increasing interfacial chemical bonds.Therefore,the MRR increases,and the surface roughness decreases and levels off.In addition,CMP can be regulated by tuning the synergistic effect of oxidation,complexation,and dissolution for mechanical plowing,while tuning the synergistic effect of oxidation and ionic strength for chemical bonding.The findings provide mechanistic insight into the material removal mechanism in CMP. 展开更多
关键词 chemical mechanical polishing corrosion wear material removal mode mechanical plowing chemical bonding
原文传递
Preparation and properties of nano-composite ceramic coating by thermo chemical reaction method
11
作者 马壮 孙方红 李智超 《Journal of Coal Science & Engineering(China)》 2007年第2期211-214,共4页
Nano-composite ceramic coating was fabricated on Q235 steel through thermo chemical reaction method. Structure of the coating was analyzed and the properties were tested. The results show that a few of new ceramic pha... Nano-composite ceramic coating was fabricated on Q235 steel through thermo chemical reaction method. Structure of the coating was analyzed and the properties were tested. The results show that a few of new ceramic phases, such as MgAI2O4, ZnAI2O4, AI2SiO5, Ni3Fe and Fe3AI, are formed on the coating during the process of solidifying at 600 ℃. The ceramic coating is dense and the high bonding strength is obtained. The average bonding strength between the coating and matrix could be 14.22 MPa. The acid resistance of the coating increase by 8.8 times, the alkali resistance by 4.1 times, the salt resistance bv 10.3 times, and the wear resistance bv 2.39 times. 展开更多
关键词 thermo chemical reaction nano-composite ceramic coating bonding strength corrosion resistance abrasion resistance
下载PDF
An Investigation of Thermomechanical Behavior of Tunisian Luffa Sponges’ Fibers
12
作者 Khaled Kharrati Madiha Salhi +1 位作者 Jemaa Sliman Ridha Abdeljabar 《Materials Sciences and Applications》 CAS 2022年第10期519-531,共13页
This work is realized in the context of valorizing natural and local resources, in particular, luffa plant fruit (luffa sponge). The raw fibers of the luffa sponge have a short lifetime. Hence, when they are chemicall... This work is realized in the context of valorizing natural and local resources, in particular, luffa plant fruit (luffa sponge). The raw fibers of the luffa sponge have a short lifetime. Hence, when they are chemically treated, it constitutes a solution is prepared to limit their degradation in the long term and to improve their mechanical characteristics. Therefore, this paper studies the effect of the chemical treatment on the mechanical properties of the luffa sponge’s fibers (fibers of luffa Sponge). The chemical process consists of dipping a brunch of luffa in various concentrations of sodium hydroxide (NaOH) at different time intervals and at different temperature conditions. The luffa sponge’s fibers were mechanical. Characterized before and after the treatment, mechanically (micro traction test). It has been shown that an optimum of 61% increase in mechanical properties (tensile strength) has been reached in the following conditions: treatment with 1% concentration for 90 min at 50&deg;C. 展开更多
关键词 Luffa Sponge’s Fibers chemical Treatment Thermogravimetric Analysis (TGA) X-Ray Diffraction Spectrum Infrared Spectroscopy (IR) mechanical Characteristics Tensile strength
下载PDF
Estimates of strength and cracking behaviors of pre-flawed granite specimens treated by chemical corrosion under triaxial compression tests 被引量:1
13
作者 Zhicong LI Richeng LIU +3 位作者 Shuchen LI Hongwen JING Xiaozhao LI Liyuan YU 《Frontiers of Earth Science》 SCIE CSCD 2022年第2期411-434,共24页
Four types of granite specimens were prepared and treated by chemical corrosion for 5 and 30 days,which were then used to carry out triaxial compression tests under different confining pressuresσ_(3).Type A is the in... Four types of granite specimens were prepared and treated by chemical corrosion for 5 and 30 days,which were then used to carry out triaxial compression tests under different confining pressuresσ_(3).Type A is the intact sample with no preexisting flaws.Types B and C are the samples containing two relatively low-dip flaws and two relatively high-dip flaws,respectively.Type D is the sample including both relatively low-dip and relatively high-dip flaws.The influences of pH value of chemical solutions,flaw distribution,corrosion time andσ_(3) on triaxial stress-strain curves and ultimate failure modes are analyzed and discussed.The results show that the pH value of the chemical solution,corrosion time and the arrangement of preexisting flaws play crucial roles in the cracking behaviors of granite specimens.Type A specimens have the largest peak axial deviatoric stress,followed by Type C,Type D,and Type B specimens,respectively.It is because the decrease in the inclination of preexisting flaws induces the weakening effect due to the decrease in the shadow area along the compaction direction.Under aσ_(3) of 5 MPa,the peak axial deviatoric stress drops by approximately 40.89%,29.08%,4.08%,and 23.53%for pH=2,4,7,and 12,respectively.For intact granite(Type A)specimens,the ultimate failure mode displays a typical shear mode.The connection of two secondary cracks initiated at the tips of preexisting cracks is always the ultimate failure and crack coalescence mode for Type B specimens.The ultimate failure and crack coalescence mode of Types C and D specimens are significantly affected by pH value of the chemical solution,corrosion time andσ_(3),which is different from those of Types A and B specimens due to the differences in flow distributions. 展开更多
关键词 GRANITES preexisting flaws chemical corrosion triaxial compression strength cracking behavior
原文传递
Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application 被引量:1
14
作者 Kun Li Luxin Liang +5 位作者 Peng Du Zeyun Cai Tao Xiang Hiroyasu Kanetaka Hong Wu Guoqiang Xie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第8期73-83,共11页
Magnesium(Mg)alloys can be regarded as the most promising biodegradable implant materials for orthopedic and stent applications due to their good biocompatibility and low Young’s modulus which is near to that of natu... Magnesium(Mg)alloys can be regarded as the most promising biodegradable implant materials for orthopedic and stent applications due to their good biocompatibility and low Young’s modulus which is near to that of natural bone.However,its applicability is hindered because it exhibits a high corrosion rate in the physiological environments.In this work,we fabricated Mg_(66)Zn_(30)Ca_(4)/Fe bulk metallic glass composites via spark plasma sintering(SPS).We studied the influence of different contents of Fe on the properties of the composites.The results indicated that Fe was uniformly distributed on the surface of Mg_(66)Zn_(30)Ca_(4) metallic glass(MG)as a second phase,which led to an improvement in the corrosion resistance and mechanical strength.The standard potential of Mg_(66)Zn_(30)Ca_(4)/Fe bulk metallic glass(BMG)composites increased as compared to Mg_(66)Zn_(30)Ca_(4),while their mechanical strength improved from 355 MPa to 616 MPa.Furthermore,cytotoxicity was investigated via the CCK-8 assay and calcein-AM staining,which revealed that the extraction mediums diluted 6 times(EM×6)of the Mg_(66)Zn_(30)Ca_(4) and Mg_(66)Zn_(30)Ca_(4)/Fe did not cause cell toxicity on day 3 and 5,while the EM×6 of the Mg_(66)Zn_(30)Ca_(4) showed cytotoxicity on day 1,3 and 5.Thus,Mg_(66)Zn_(30)Ca_(4)/Fe BMG composites exhibit significant potential for fabricating implants with good mechanical strength and corrosion resistance. 展开更多
关键词 Mg_(66)Zn_(30)Ca_(4)/Fe bulk metallic glass COMPOSITES Spark plasma sintering corrosion behaviour mechanical strength
原文传递
硅烷化、锆化、硅锆化预处理膜的性能对比
15
作者 李玉飞 李文哲 +3 位作者 陆林峰 田璐 王珏皓 田伟东 《电镀与涂饰》 CAS 北大核心 2024年第10期133-139,共7页
[目的]旨在为碳钢涂装开发性能优良的环保型预处理工艺。[方法]在Q235碳钢表面分别制备了硅烷化、锆化和硅锆化预处理膜,并通过中性盐雾试验、电化学测试、拉拔试验和微观形貌分析,考察了它们的性能。[结果]3种预处理工艺都有效提升了... [目的]旨在为碳钢涂装开发性能优良的环保型预处理工艺。[方法]在Q235碳钢表面分别制备了硅烷化、锆化和硅锆化预处理膜,并通过中性盐雾试验、电化学测试、拉拔试验和微观形貌分析,考察了它们的性能。[结果]3种预处理工艺都有效提升了基材的耐蚀性,2 h中性盐雾试验后未处理的碳钢表面腐蚀严重,硅锆化处理的试样表面仅有不超过10%的面积被腐蚀。电化学极化曲线测量的结果显示,预处理后试样的腐蚀电位都正移了,硅锆化试样的腐蚀电流密度只是未处理试样的1/38。电化学阻抗谱测试结果表明预处理后基材的腐蚀反应阻力变大,锆化和硅锆化能令材料的表面粗糙度增大。环氧涂层在3种预处理Q235钢表面的附着力均超过10 MPa,完全符合一般涂装应用的要求。[结论]3种预处理工艺均能有效提升碳钢基体耐蚀性和涂层附着力,其中硅锆化处理的效果最好。 展开更多
关键词 硅烷化 锆化 复合工艺 涂装 预处理 附着力 耐蚀性 力学性能
下载PDF
高强度抗硫管钢的抗硫化氢应力腐蚀影响研究
16
作者 罗明 张忠铧 《宝钢技术》 CAS 2024年第2期1-8,共8页
随着深井、超深井的不断开发,兼顾超高强度和高抗硫性能的抗硫管需求越来越多,而随着钢的强度增加,其抗硫化氢应力腐蚀开裂敏感性也随之增加。基于对低合金钢抗硫化氢应力腐蚀影响机理的认识,通过成分合理设计、超纯净钢冶炼、环形炉加... 随着深井、超深井的不断开发,兼顾超高强度和高抗硫性能的抗硫管需求越来越多,而随着钢的强度增加,其抗硫化氢应力腐蚀开裂敏感性也随之增加。基于对低合金钢抗硫化氢应力腐蚀影响机理的认识,通过成分合理设计、超纯净钢冶炼、环形炉加热制度、热处理性能窄幅控制等措施,开发了基于微观组织、析出相、强度、夹杂物、偏析等控制的110 ksi(1 ksi=6.895 MPa)及以上钢级高强度抗硫管产品。 展开更多
关键词 高强度 油套管 硫化氢应力腐蚀 腐蚀机理
下载PDF
侏罗系油藏油井用固体缓蚀剂适用性研究
17
作者 吕祥鸿 谢登峰 +3 位作者 徐建国 张鑫鑫 王晨辉 王晨 《焊管》 2024年第3期35-40,共6页
依据相关标准及模拟工况的腐蚀速率和电化学性能测试,对固体缓蚀剂的理化性能、缓蚀效果和缓蚀作用机理进行评价分析,探讨固体缓蚀剂在长庆油田侏罗系油藏开发过程中的适用性。研究结果表明,固体缓蚀剂具有良好的理化性能,在现场水介质... 依据相关标准及模拟工况的腐蚀速率和电化学性能测试,对固体缓蚀剂的理化性能、缓蚀效果和缓蚀作用机理进行评价分析,探讨固体缓蚀剂在长庆油田侏罗系油藏开发过程中的适用性。研究结果表明,固体缓蚀剂具有良好的理化性能,在现场水介质中溶解性良好,并且无乳化倾向,但大量油相的存在会降低固体缓蚀剂的长期有效性;添加固体缓蚀剂后,在较短释放周期内,J55钢的均匀腐蚀速率明显下降,缓蚀效率高达85.64%;固体缓蚀剂长时间释放后,缓蚀作用明显减弱,其释放60 d后的缓蚀效率仅为7.37%;综合固体缓蚀剂均匀和局部腐蚀缓蚀性能以及释放率的测试结果,其投加周期不应超过60 d;固体缓蚀剂的电化学作用机理主要表现为阴极阻滞型缓蚀,但当固体缓蚀剂长时间释放后,J55钢的阳极过程明显活化,缓蚀剂吸附膜阻急剧减小,固体缓蚀剂的缓蚀效果显著降低。 展开更多
关键词 固体缓蚀剂 侏罗系油藏 理化性能 缓蚀作用机理
下载PDF
长材轧机热轧钢筋类产品生产概述
18
作者 崔海伟 黄东城 《南方金属》 CAS 2024年第5期1-5,共5页
结合国家标准对长材轧机热轧钢筋类产品的生产工艺、产品特点等进行解读,并介绍高强螺纹钢筋的几种生产工艺。可供工程技术人员、产品用户等理解各类热轧钢筋的生产工艺、产品特点等。
关键词 热轧钢筋 高强螺纹钢筋 热轧光圆钢筋 化学成分 力学性能
下载PDF
基于量子化学计算优化的氮掺杂碳量子点缓蚀剂制备及其缓蚀性能 被引量:1
19
作者 许旭敏 顾立宏 +4 位作者 刘仁体 石晓龙 王澜涛 孔继周 韦红余 《电镀与涂饰》 CAS 北大核心 2024年第1期98-108,共11页
[目的]氮掺杂碳量子点(N-CQDs)作为一种绿色高效的新型缓蚀剂,在腐蚀控制领域具有巨大的应用潜力。但由于其结构无法精确调控,很难对制备N-CQDs的众多前驱体进行筛选。[方法]依据密度泛函理论(DFT),通过Fukui指数计算各前驱体分子的优... [目的]氮掺杂碳量子点(N-CQDs)作为一种绿色高效的新型缓蚀剂,在腐蚀控制领域具有巨大的应用潜力。但由于其结构无法精确调控,很难对制备N-CQDs的众多前驱体进行筛选。[方法]依据密度泛函理论(DFT),通过Fukui指数计算各前驱体分子的优先反应活性位点,确定前驱体分子间一步脱水缩合反应产物的分子结构,并进行全局参量和局部参量的计算,分析了采用柠檬酸分别与乙二胺、尿素和氨基胍盐酸盐作为前驱体所合成的3种N-CQDs的缓蚀性能,再通过称重法对水热法合成的3种N-CQDs的缓蚀性能进行验证,优选出缓蚀性能最佳的缓蚀剂。采用紫外可见吸收光谱、荧光光谱和高分辨率场发射透射电镜表征优选缓蚀剂的荧光性能和表面形貌,并以电化学方法和表面分析方法研究此缓蚀剂对Q235碳钢在0.5 mol/L硫酸溶液中的缓蚀机理。[结果]以柠檬酸和氨基胍盐酸盐为前驱体制备的N-CQDs-3缓蚀性能最佳,且试验结果和理论计算结果一致。N-CQDs-3在紫外激发光下显示蓝绿光,平均粒径为(2.5±0.8)nm。该缓蚀剂是一种混合型缓蚀剂,主要通过物理和化学吸附同时抑制金属在酸溶液中腐蚀反应的发生,其对Q235碳钢在0.5 mol/L硫酸溶液中的缓蚀效率最高可达95.3%。[结论]通过量子化学计算方法对制备N-CQDs所用的前驱体进行筛选,提前预测其缓蚀性能,可提高试验效率。 展开更多
关键词 量子化学计算 氮掺杂碳量子点 水热合成 碳钢 缓蚀剂 吸附 防腐蚀 机理
下载PDF
Biomimetic chitin hydrogel via chemical transformation 被引量:3
20
作者 Rui-Rui Liu Qian-Qian Shi +3 位作者 Yu-Feng Meng Yong Zhou Li-Bo Mao Shu-Hong Yu 《Nano Research》 SCIE EI CSCD 2024年第2期771-777,共7页
Chitin hydrogel has been recognized as a promising material for various biomedical applications because of its biocompatibility and biodegradability.However,the fabrication of strong chitin hydrogel remains a big chal... Chitin hydrogel has been recognized as a promising material for various biomedical applications because of its biocompatibility and biodegradability.However,the fabrication of strong chitin hydrogel remains a big challenge because of the insolubility of chitin in many solvents and the reduced chain length of chitin regenerated from solutions.We herein introduce the fabrication of chitin hydrogel with biomimetic structure through the chemical transformation of chitosan,which is a water-soluble deacetylated derivative of chitin.The reacetylation of the amino group in chitosan endows the obtained chitin hydrogel with outstanding resistance to swelling,degradation,extreme temperature and pH conditions,and organic solvents.The chitin hydrogel has excellent mechanical properties while retaining a high water content(more than 95 wt.%).It also shows excellent antifouling performance that it resists the adhesion of proteins,bacteria,blood,and cells.Moreover,as the initial chitosan solution can be feasibly frozen and templated by ice crystals,the chitin hydrogel structure can be either nacre-like or wood-like depending on the freezing method of the precursory chitosan solution.Owing to these anisotropic structures,such chitin hydrogel can exhibit anisotropic mechanics and mass transfer capabilities.The current work provides a rational strategy to fabricate chitin hydrogels and paves the way for its practical applications as a superior biomedical material. 展开更多
关键词 chitin hydrogel biomimetic structure chemical stability mechanical strength ANTIFOULING
原文传递
上一页 1 2 24 下一页 到第
使用帮助 返回顶部