In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two s...In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.展开更多
In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration ...In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2. Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.展开更多
Chemical Mechanical Polishing(CMP)工艺过程中产生大量运行数据,存在数据量庞大、数据种类复杂多样等特点。而且现有数据分析方法单一,造成数据资源浪费,限制研究人员对运行情况的掌握和优化。针对这些情况提出一种数据可视化分析系统...Chemical Mechanical Polishing(CMP)工艺过程中产生大量运行数据,存在数据量庞大、数据种类复杂多样等特点。而且现有数据分析方法单一,造成数据资源浪费,限制研究人员对运行情况的掌握和优化。针对这些情况提出一种数据可视化分析系统,对运行数据进行实时存储,提出4种可视化视图,针对不同数据分析需求,通过对比分析、关联分析和用户交互,可有效帮助研究人员探索工艺过程中影响工艺效果的原因,优化工艺参数,提升生产效率。展开更多
Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show ...Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show that the MRR increases linearly with the abrasive concentration, while the rms roughness decreases with the increasing abrasive concentration. In addition, the in situ coefficient of friction (COF) is also conducted during the sapphire polishing process. The results present that COF increases sharply with the abrasive concentration up to 20 wt% and then shows a slight decrease from 20wt% to 40wt%. Temperature is a product of the friction force that is proportional to COF, which is an indicator for the mechanism of the sapphire CMP.展开更多
基金This project is supported by National Basic Research Program of China (973 Program, N0.2003CB716201)National Natural Science Foundation of China (No.50575131)Science Foundation of Shanghai Municipal Commission of Science and Technology, China(No.0452nm013).
文摘In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934300, 2011CBA00607, and 2011CB9328004)the National Integrate Circuit Research Program of China (Grant No. 2009ZX02023-003)+2 种基金the National Natural Science Foundation of China (Grant Nos. 60906004, 60906003,61006087, 61076121, 61176122, and 61106001)the Science and Technology Council of Shanghai, China (Grant Nos. 11DZ2261000 and 11QA1407800)the Chinese Academy of Sciences (Grant No. 20110490761)
文摘In this paper, chemical mechanical planarization (CMP) of amorphous Ge2Sb2Te5 (a-GST) in acidic H2O2 slurry is investigated. It was found that the removal rate of a-GST is strongly dependent on H2O2 concentration and gradually increases with the increase in H2O2 concentration, but the static etch rate first increases and then slowly decreases with the increase in H2O2 concentration. To understand the chemical reaction behavior of H2O2 on the a-GST surface, the potentiodynamic polarization curve, surface morphology and cross-section of a-GST immersed in acidic slurry are measured and the results reveal that a-GST exhibits a from active to passive behavior for from low to high concentration of H2O2. Finally, a possible removal mechanism of a-GST in different concentrations of H2O2 in the acidic slurry is described.
基金Supported by the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period under Grant No 2011ZX02704the National Natural Science Foundation of China under Grant No 51205387the Science and Technology Commission of Shanghai under Grant Nos llnm0500300 and 14XD1425300
文摘Effects of abrasive concentration on material removal rate CMRR) and surtace quality m the chemical mecnamcal polishing (CMP) of light-emitting diode sapphire substrates are investigated. Experimental results show that the MRR increases linearly with the abrasive concentration, while the rms roughness decreases with the increasing abrasive concentration. In addition, the in situ coefficient of friction (COF) is also conducted during the sapphire polishing process. The results present that COF increases sharply with the abrasive concentration up to 20 wt% and then shows a slight decrease from 20wt% to 40wt%. Temperature is a product of the friction force that is proportional to COF, which is an indicator for the mechanism of the sapphire CMP.