Mutagenized populations have provided important materials for introducing variation and identifying gene function in plants. In this study, an ethyl methanesulfonate(EMS)-induced soybean(Glycine max) population,co...Mutagenized populations have provided important materials for introducing variation and identifying gene function in plants. In this study, an ethyl methanesulfonate(EMS)-induced soybean(Glycine max) population,consisting of 21,600 independent M_2 lines, was developed.Over 1,000 M_(4(5))families, with diverse abnormal phenotypes for seed composition, seed shape, plant morphology and maturity that are stably expressed across different environments and generations were identified. Phenotypic analysis of the population led to the identification of a yellow pigmentation mutant, gyl, that displayed significantly decreased chlorophyll(Chl) content and abnormal chloroplast development. Sequence analysis showed that gyl is allelic to Minn Gold, where a different single nucleotide polymorphism variation in the Mg-chelatase subunit gene(ChlI1a) results in golden yellow leaves. A cleaved amplified polymorphic sequence marker was developed and may be applied to marker-assisted selection for the golden yellow phenotype in soybean breeding. We show that the newly developed soybean EMS mutant population has potential for functional genomics research and genetic improvement in soybean.展开更多
基金supported by National Key R&D Program for Crop Breeding (2016YFD0100201)the Crop Germplasm Resources Protection (2014NWB030, 2015NWB030-05)+1 种基金Platform of National Crop Germplasm Resources of China (2014-004, 2015-004)The Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAAS)
文摘Mutagenized populations have provided important materials for introducing variation and identifying gene function in plants. In this study, an ethyl methanesulfonate(EMS)-induced soybean(Glycine max) population,consisting of 21,600 independent M_2 lines, was developed.Over 1,000 M_(4(5))families, with diverse abnormal phenotypes for seed composition, seed shape, plant morphology and maturity that are stably expressed across different environments and generations were identified. Phenotypic analysis of the population led to the identification of a yellow pigmentation mutant, gyl, that displayed significantly decreased chlorophyll(Chl) content and abnormal chloroplast development. Sequence analysis showed that gyl is allelic to Minn Gold, where a different single nucleotide polymorphism variation in the Mg-chelatase subunit gene(ChlI1a) results in golden yellow leaves. A cleaved amplified polymorphic sequence marker was developed and may be applied to marker-assisted selection for the golden yellow phenotype in soybean breeding. We show that the newly developed soybean EMS mutant population has potential for functional genomics research and genetic improvement in soybean.