The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The example...The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The examples show that both accuracy and stability are better than Runge-Kutta method with four-order. The coefficients of the equation are stored with sparse matrix pattern, so an algorithm is presented which combines a compact storage scheme with reduced computation cost. The computation of the competitive and consecutive reaction in the rotating packed bed, taken as examples, shows that the method is effective.展开更多
The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation...The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation and molecule collision theory to predict the dissociation reaction rate coefficients. Upon comparison with available literature, the model was confirmed to be acceptably accurate in general. Several reaction rate coefficients of the NO/SO2/N2/O2 dissociation system were derived according to the Arrhenius formula. The activation energies of each plasma reaction were calculated by quantum chemistry methods. The relation between the dissociation reaction rate coefficient and electron temperature was established to describe the importance of each reaction and to predict relevant processes of gaseous chemical reactions. The sensitivity of the mechanism of NO/SO2/N2/O2 dissociation reaction in a non-thermal plasma was also analysed.展开更多
An industrial mineral wollastonite (CaSiO3) was produced under solid state conditions from rice husk silica and limestone. Reaction was carried out at 900'C to 1300'C for 1 h. The product batches were subjecte...An industrial mineral wollastonite (CaSiO3) was produced under solid state conditions from rice husk silica and limestone. Reaction was carried out at 900'C to 1300'C for 1 h. The product batches were subjected to XRD and chemical analysis techniques specific for wollastonite. Mole fractions of different product batches were calculated on the basis of accumulated data to study the kinetics. Specific rate constants and reaction rate were also found out. Various probable models of mechanism for reaction were considered and testified with the laid down criterion for suggesting the suitable one. The resulting data were treated with Arrhenius equation as well and activation energy was calculated--therefrom. In addition to finding it's value from the slope of Arrhenius curve, an alternate method was also applied for this purpose. Both of the values were observed to be comparable. The activation energy required for performed reaction was found to be almost one third of that reported for synthesizing CaSiO3 by using quartz. This referred to the economical preparation of wollastonite by using rice husk as a source of silica instead of quartz.展开更多
In this study, the kinetics of isopropyl palmitate synthesis including the reaction mechanism was studied based on the two-step noncatalytic method. The liquid-phase diffusion effect on the reaction process was elimin...In this study, the kinetics of isopropyl palmitate synthesis including the reaction mechanism was studied based on the two-step noncatalytic method. The liquid-phase diffusion effect on the reaction process was eliminated by adjusting the stirring rate. The results showed that the two-step reaction followed a tetrahedral mechanism and conformed to second-order reaction kinetics. Nucleophilic attack on the carbonyl carbon afforded an intermediate, containing a tetrahedral carbon center. The intermediate ultimately decomposed by elimination of the leaving group, affording isopropyl palmitate. The experimental data were analyzed at different temperatures by the integral method. The kinetic equations of the each step were deduced, and the activation energy and frequency factor were obtained. Experiments were performed to verify the feasibility of kinetic equations, and the result showed that the kinetic equations were reliable. This study could be very signi ficant to both industrial application and determining the continuous production of isopropyl palmitate.展开更多
The accelerating rate calorimeter was applied to study the thermal hazard of two kinds of organic peroxides, i.e. methyl ethyl ketone peroxide (MEKPO) and benzoyl peroxide (BPO). And their thermal decomposition charac...The accelerating rate calorimeter was applied to study the thermal hazard of two kinds of organic peroxides, i.e. methyl ethyl ketone peroxide (MEKPO) and benzoyl peroxide (BPO). And their thermal decomposition characteristics were discussed. Meanwhile, thermal decomposition characteristics of MEKPO and BPO vvere compared. The result indicated that MEKPO is more sensitive to thermal effect than BPO. While once the thermal decomposition takes place. BPO will be more hazardous than MEKPO due to its serious pressure effect. Thermal kinetic analysis of these two kinds of organic peroxides was also taken, and the kinetic parameters for them were calculated. The study of thermal decomposition of MEKPO solution with different initial concentrations indicated that, the lower concentration MEKPO solution is, the higher onset temperature will be. And with the addition of organic solvent, it becomes more difficult for MEKPO to reach a thermal decomposition. Therefore, its thermal hazard is reduced.展开更多
The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acid...The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.展开更多
The combustion processes of homogeneous charge compression ignition (HCCI) engines whose piston surfaces have been coated with catalyst (rhodium or platinum) were numerically investigated. A singlezone model and a...The combustion processes of homogeneous charge compression ignition (HCCI) engines whose piston surfaces have been coated with catalyst (rhodium or platinum) were numerically investigated. A singlezone model and a multi-zone model were developed. The effects of catalytic combustion on the ignition timing of the HCCI engine were analyzed through the single-zone model. The results showed that the ignition timing of the HCCI engine was advanced by the catalysis. The effects of catalytic combustion on HC, CO and NOx emissions of the HCCI engine were analyzed through the multi-zone model. The results showed that the emissions of HC and CO (using platinum (Pt) as catalyst) were decreased, while the emissions of NOx were elevated by catalytic combustion. Compared with catalyst Pt, the HC emissions were lower with catalyst rhodium (Rh) on the piston surface, but the emissions of NOx and CO were higher.展开更多
Strain engineering,as a cutting-edge method for modulating the electronic structure of catalysts,plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules.The electroc...Strain engineering,as a cutting-edge method for modulating the electronic structure of catalysts,plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules.The electrocatalytic performance is influenced by the electronic structure,which can be achieved by introducing the external forces or stresses to adjust interatomic spacing between surface atoms.The challenges in strain engineering research lie in accurately understanding the mechanical impact of strain on performance.This paper first introduces the basic strategy for generating the strain,summarizes the different strain generation forms and their advantages and disadvantages.The progress in researching the characterization means for the lattice strains and their applications in the field of electrocatalysis is also emphasized.Finally,the challenges of strain engineering are introduced,and an outlook on the future research directions is provided.展开更多
In this paper,photocatalytic degradation processes of different materials are fitted to the first-order kinetic model,second-order kinetic model and fractional first-order kinetic model.Deterministic coefficients are ...In this paper,photocatalytic degradation processes of different materials are fitted to the first-order kinetic model,second-order kinetic model and fractional first-order kinetic model.Deterministic coefficients are calculated for the evaluation of the validity of these models.The fitting results show clearly that the degradation process can fit the fractional first-order kinetic model in a very good manner.In this way,two material parameters can be well defined.One is the degradation time,which can be used to describe the photocatalytic degradation process quantitatively.Another is the order of the derivative,which could be related to the material’s microstructure.展开更多
In this study,a CFD model coupled with heterogeneous flow structure,mass transfer equations,and chemical reaction kinetics is established to forecast the pyrolusite reduction reaction behavior.Compared with the previo...In this study,a CFD model coupled with heterogeneous flow structure,mass transfer equations,and chemical reaction kinetics is established to forecast the pyrolusite reduction reaction behavior.Compared with the previous studies which ignore the volume change of solids phase,the influence of volume shrinkage on reaction and flow behavior is explored in this research.Volume shrinkage of pyrolusite is proved to be non-negligible in predicting the conversion rate.The negligence of volume shrinkage leads to the overestimation of conversion rate for its inaccurate estimation of surface area for reaction.Besides,the influence of volume shrinkage on the reaction is found smaller in the scaled-up reactor.展开更多
Combustion of biomass or coal is known to yield aerosols and condensed alkali minerals that affect boiler heat transfer performance.In this work,alkali behavior in the pressurized oxyfuel co-combustion of coal and bio...Combustion of biomass or coal is known to yield aerosols and condensed alkali minerals that affect boiler heat transfer performance.In this work,alkali behavior in the pressurized oxyfuel co-combustion of coal and biomass is predicted by thermodynamic and chemical kinetic calculations.Existence of solid minerals is evaluated by X-ray diffraction(XRD)analysis of ashes from pressure thermogravimetric combustion.Results indicate that a rise in pressure affects solid alkali minerals negligibly,but increases their contents in the liquid phase and decreases them in the gas phase,especially below 900℃.Thus,less KCl will condense on the boiler heat transfer surfaces leading to reduced corrosion.Increasing the blend ratio of biomass to coal will raise the content of potassium-based minerals but reduce the sodium-based ones.The alkali-associated slagging in the boiler can be minimized by the synergistic effect of co-combustion of sulphur-rich coal and potassium-rich biomass,forming stable solid K2SO4 at typical fluidized bed combustion temperatures.Kinetics modelling based on reaction mechanisms shows that oxidation of SO2 to SO3 plays a major role in K2SO4 formation but that the contribution of this oxidation decreases with increase in pressure.展开更多
文摘The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The examples show that both accuracy and stability are better than Runge-Kutta method with four-order. The coefficients of the equation are stored with sparse matrix pattern, so an algorithm is presented which combines a compact storage scheme with reduced computation cost. The computation of the competitive and consecutive reaction in the rotating packed bed, taken as examples, shows that the method is effective.
文摘The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation and molecule collision theory to predict the dissociation reaction rate coefficients. Upon comparison with available literature, the model was confirmed to be acceptably accurate in general. Several reaction rate coefficients of the NO/SO2/N2/O2 dissociation system were derived according to the Arrhenius formula. The activation energies of each plasma reaction were calculated by quantum chemistry methods. The relation between the dissociation reaction rate coefficient and electron temperature was established to describe the importance of each reaction and to predict relevant processes of gaseous chemical reactions. The sensitivity of the mechanism of NO/SO2/N2/O2 dissociation reaction in a non-thermal plasma was also analysed.
文摘An industrial mineral wollastonite (CaSiO3) was produced under solid state conditions from rice husk silica and limestone. Reaction was carried out at 900'C to 1300'C for 1 h. The product batches were subjected to XRD and chemical analysis techniques specific for wollastonite. Mole fractions of different product batches were calculated on the basis of accumulated data to study the kinetics. Specific rate constants and reaction rate were also found out. Various probable models of mechanism for reaction were considered and testified with the laid down criterion for suggesting the suitable one. The resulting data were treated with Arrhenius equation as well and activation energy was calculated--therefrom. In addition to finding it's value from the slope of Arrhenius curve, an alternate method was also applied for this purpose. Both of the values were observed to be comparable. The activation energy required for performed reaction was found to be almost one third of that reported for synthesizing CaSiO3 by using quartz. This referred to the economical preparation of wollastonite by using rice husk as a source of silica instead of quartz.
文摘In this study, the kinetics of isopropyl palmitate synthesis including the reaction mechanism was studied based on the two-step noncatalytic method. The liquid-phase diffusion effect on the reaction process was eliminated by adjusting the stirring rate. The results showed that the two-step reaction followed a tetrahedral mechanism and conformed to second-order reaction kinetics. Nucleophilic attack on the carbonyl carbon afforded an intermediate, containing a tetrahedral carbon center. The intermediate ultimately decomposed by elimination of the leaving group, affording isopropyl palmitate. The experimental data were analyzed at different temperatures by the integral method. The kinetic equations of the each step were deduced, and the activation energy and frequency factor were obtained. Experiments were performed to verify the feasibility of kinetic equations, and the result showed that the kinetic equations were reliable. This study could be very signi ficant to both industrial application and determining the continuous production of isopropyl palmitate.
文摘The accelerating rate calorimeter was applied to study the thermal hazard of two kinds of organic peroxides, i.e. methyl ethyl ketone peroxide (MEKPO) and benzoyl peroxide (BPO). And their thermal decomposition characteristics were discussed. Meanwhile, thermal decomposition characteristics of MEKPO and BPO vvere compared. The result indicated that MEKPO is more sensitive to thermal effect than BPO. While once the thermal decomposition takes place. BPO will be more hazardous than MEKPO due to its serious pressure effect. Thermal kinetic analysis of these two kinds of organic peroxides was also taken, and the kinetic parameters for them were calculated. The study of thermal decomposition of MEKPO solution with different initial concentrations indicated that, the lower concentration MEKPO solution is, the higher onset temperature will be. And with the addition of organic solvent, it becomes more difficult for MEKPO to reach a thermal decomposition. Therefore, its thermal hazard is reduced.
基金supported by the Special Project Items No.2 in National Long-term Technology Development Plan,China(No.2009ZX02308)
文摘The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole(BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.
基金the National Key Basic Research Development Project of China (2001CB209201)
文摘The combustion processes of homogeneous charge compression ignition (HCCI) engines whose piston surfaces have been coated with catalyst (rhodium or platinum) were numerically investigated. A singlezone model and a multi-zone model were developed. The effects of catalytic combustion on the ignition timing of the HCCI engine were analyzed through the single-zone model. The results showed that the ignition timing of the HCCI engine was advanced by the catalysis. The effects of catalytic combustion on HC, CO and NOx emissions of the HCCI engine were analyzed through the multi-zone model. The results showed that the emissions of HC and CO (using platinum (Pt) as catalyst) were decreased, while the emissions of NOx were elevated by catalytic combustion. Compared with catalyst Pt, the HC emissions were lower with catalyst rhodium (Rh) on the piston surface, but the emissions of NOx and CO were higher.
基金supported by the National Natural Science Foundation of China(Nos.12172118,52071125,12227801)the Research Program of Local Science and Technology Development under the Guidance of Central(No.216Z4402G)+2 种基金Science Research Project of Hebei Education Department(No.JZX2023004)Opening fund of State Key Laboratory of Nonlinear Mechanics(LNM)National Key Research and Development Program of China(No.2019YFC0840709)。
文摘Strain engineering,as a cutting-edge method for modulating the electronic structure of catalysts,plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules.The electrocatalytic performance is influenced by the electronic structure,which can be achieved by introducing the external forces or stresses to adjust interatomic spacing between surface atoms.The challenges in strain engineering research lie in accurately understanding the mechanical impact of strain on performance.This paper first introduces the basic strategy for generating the strain,summarizes the different strain generation forms and their advantages and disadvantages.The progress in researching the characterization means for the lattice strains and their applications in the field of electrocatalysis is also emphasized.Finally,the challenges of strain engineering are introduced,and an outlook on the future research directions is provided.
基金supported by the National Natural Science Foundation of China(51672159,51501105 and 51611540342).
文摘In this paper,photocatalytic degradation processes of different materials are fitted to the first-order kinetic model,second-order kinetic model and fractional first-order kinetic model.Deterministic coefficients are calculated for the evaluation of the validity of these models.The fitting results show clearly that the degradation process can fit the fractional first-order kinetic model in a very good manner.In this way,two material parameters can be well defined.One is the degradation time,which can be used to describe the photocatalytic degradation process quantitatively.Another is the order of the derivative,which could be related to the material’s microstructure.
基金grateful to the National Natural Science Foundation of China(grant No.21878304 and 21736010)the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDA29040200)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(grant No.21921005).
文摘In this study,a CFD model coupled with heterogeneous flow structure,mass transfer equations,and chemical reaction kinetics is established to forecast the pyrolusite reduction reaction behavior.Compared with the previous studies which ignore the volume change of solids phase,the influence of volume shrinkage on reaction and flow behavior is explored in this research.Volume shrinkage of pyrolusite is proved to be non-negligible in predicting the conversion rate.The negligence of volume shrinkage leads to the overestimation of conversion rate for its inaccurate estimation of surface area for reaction.Besides,the influence of volume shrinkage on the reaction is found smaller in the scaled-up reactor.
基金Project supported by the National Science Foundation Cooperation of China and USA(NSFC-NSF)(No.51661125012)Project of the State Key Laboratory of Clean Energy Utilization,Zhejiang University,China。
文摘Combustion of biomass or coal is known to yield aerosols and condensed alkali minerals that affect boiler heat transfer performance.In this work,alkali behavior in the pressurized oxyfuel co-combustion of coal and biomass is predicted by thermodynamic and chemical kinetic calculations.Existence of solid minerals is evaluated by X-ray diffraction(XRD)analysis of ashes from pressure thermogravimetric combustion.Results indicate that a rise in pressure affects solid alkali minerals negligibly,but increases their contents in the liquid phase and decreases them in the gas phase,especially below 900℃.Thus,less KCl will condense on the boiler heat transfer surfaces leading to reduced corrosion.Increasing the blend ratio of biomass to coal will raise the content of potassium-based minerals but reduce the sodium-based ones.The alkali-associated slagging in the boiler can be minimized by the synergistic effect of co-combustion of sulphur-rich coal and potassium-rich biomass,forming stable solid K2SO4 at typical fluidized bed combustion temperatures.Kinetics modelling based on reaction mechanisms shows that oxidation of SO2 to SO3 plays a major role in K2SO4 formation but that the contribution of this oxidation decreases with increase in pressure.