Concrete is commonly seen as a durable and long-lasting construction material. However, the long-term performance of a concrete structure can be greatly compromised by early-age cracking. This work is an experimental ...Concrete is commonly seen as a durable and long-lasting construction material. However, the long-term performance of a concrete structure can be greatly compromised by early-age cracking. This work is an experimental contribution to study early age deformations of cement paste. Its aim is, firstly, to develop an experimental dispositive for assessing chemical and autogenous shrinkage, and secondly, to measure these volumetric deformations in cement paste. The setup was done following the gravimetric method of measurement, which exploits the Archimedes’ principle. It is made up of an electronic balance, a data accusation unit, a temperature control unit and a buoyancy bath. Investigations were done on Portland cement (CPA-CEM II) at the following W/C ratios: 0.25, 0.3, 0.35, 0.4 and 0.5. It was noticed that the water-cement ratio does not influence the magnitude of the chemical shrinkage in a significant manner but had a kinetic effect;a lower W/C induces a faster rate of chemical shrinkage. Autogenous shrinkage was discovered to be highly inversely proportional to the W/C and was also noticed to be in a function of chemical shrinkage within the first 2 to 4 hours when the paste was still liquid.展开更多
Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects ...Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.展开更多
文摘Concrete is commonly seen as a durable and long-lasting construction material. However, the long-term performance of a concrete structure can be greatly compromised by early-age cracking. This work is an experimental contribution to study early age deformations of cement paste. Its aim is, firstly, to develop an experimental dispositive for assessing chemical and autogenous shrinkage, and secondly, to measure these volumetric deformations in cement paste. The setup was done following the gravimetric method of measurement, which exploits the Archimedes’ principle. It is made up of an electronic balance, a data accusation unit, a temperature control unit and a buoyancy bath. Investigations were done on Portland cement (CPA-CEM II) at the following W/C ratios: 0.25, 0.3, 0.35, 0.4 and 0.5. It was noticed that the water-cement ratio does not influence the magnitude of the chemical shrinkage in a significant manner but had a kinetic effect;a lower W/C induces a faster rate of chemical shrinkage. Autogenous shrinkage was discovered to be highly inversely proportional to the W/C and was also noticed to be in a function of chemical shrinkage within the first 2 to 4 hours when the paste was still liquid.
基金the Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘Due to the low water-cement ratio of ultra-high-performance concrete(UHPC),fluidity and shrinkage cracking are key aspects determining the performance and durability of this type of concrete.In this study,the effects of different types of cementitious materials,chemical shrinkage-reducing agents(SRA)and steel fiber(SF)were assessed.Compared with M2-UHPC and M3-UHPC,M1-UHPC was found to have better fluidity and shrinkage cracking performance.Moreover,different SRA incorporation methods,dosage and different SF types and aspect ratios were implemented.The incorporation of SRA and SF led to a decrease in the fluidity of UHPC.SRA internal content of 1%(NSRA-1%),SRA external content of 1%(WSRA-1%),STS-0.22 and STE-0.7 decreased the fluidity of UHPC by 3.3%,8.3%,9.2%and 25%,respectively.However,SRA and SF improved the UHPC shrinkage cracking performance.NSRA-1%and STE-0.7 reduced the shrinkage value of UHPC by 40%and 60%,respectively,and increased the crack resistance by 338%and 175%,respectively.In addition,the addition of SF was observed to make the microstructure of UHPC more compact,and the compressive strength and flexural strength of 28 d were increased by 26.9%and 19.9%,respectively.