An atomic group model of the disordered binary alloy Rhx-Pt1-x has been constructed to investigate surface segregation. According to the model, we have calculated the electronic structure of the Rhx-Pt1-x alloy surfac...An atomic group model of the disordered binary alloy Rhx-Pt1-x has been constructed to investigate surface segregation. According to the model, we have calculated the electronic structure of the Rhx-Pt1-x alloy surface by using the recursion method when O atoms are adsorbed on the Rhx-Pt1-x (110) surface under the condition of coverage 0.5. The calculation results indicate that the chemical adsorption of O changes greatly the density of states near the Fermi level, and the surface segregation exhibits a reversal behaviour. In addition, when x 〈 0.3, the surface on which O is adsorbed displays the property of Pt; whereas when x 〉 0.3 it displays the property of Rh.展开更多
The effects of promoters K, Ba, Sm on the chemisorption and desorption of hydrogen and nitrogen, dispersion of metallic Ru. and catalytic activity of active carbon (AC) supported ruthenium catalyst for ammonia synthes...The effects of promoters K, Ba, Sm on the chemisorption and desorption of hydrogen and nitrogen, dispersion of metallic Ru. and catalytic activity of active carbon (AC) supported ruthenium catalyst for ammonia synthesis have been studied by means of pulse chromatography, temperature-programmed desorption, and activity test. Promoters K, Ba and Sm increased the activity of Ru/AC catalysts for ammonia synthesis significantly, and particularly, potassium exhibited the best promotion on the activity because of the strong electronic donation to metallic Ru. Much higher activity can be obtained for Ru/AC catalyst with binary or triple promoters. The activity of Ru/AC catalyst is dependent on the adsorption of hydrogen and nitrogen. The high activity of catalyst could be ascribed to strong dissociation of nitrogen on the catalyst surface. Strong adsorption of hydrogen would inhibit the adsorption of nitrogen, resulted in decrease of the catalytic activity. Ru/AC catalyst promoted by Sm2O3 shows the best dispersion of metallic Ru, since the partly reduced SmOx on the surface modifies the morphology of active sites and favors the dispersion of metallic Ru. The activity of Ru/AC catalysts is in accordance to the corresponding amount of nitrogen chemisorption and the desorption activation energy of nitrogen. The desorption activation energy for nitrogen decreases in the order of Ru>Ru-Ba>Ru-Sm>Ru-Ba-Sm>Ru-K>Ru-K-Sm>Ru-K-Ba>Ru-K-Ba-Sm, just opposite to the order of catalytic activity, suggesting that the ammonia synthesis over Ru-based catalyst is controlled by the step of dissociation of nitrogen.展开更多
Carbon nanofibers films are typical flexible electrode in the field of energy storage,but their application in Zinc-ion hybrid capacitors(ZIHCs)is limited by the low energy density due to the lack of active adsorption...Carbon nanofibers films are typical flexible electrode in the field of energy storage,but their application in Zinc-ion hybrid capacitors(ZIHCs)is limited by the low energy density due to the lack of active adsorption sites.In this work,an in-situ exfoliation strategy is reported to modulate the chemisorption sites of carbon nanofibers by high pyridine/pyrrole nitrogen doping and carbonyl functionalization.The experimental results and theoretical calculations indicate that the highly electronegative pyridine/pyrrole nitrogen dopants can not only greatly reduce the binding energy between carbonyl group and Z n2+by inducing charge delocalization of the carbonyl group,but also promote the adsorption of Zn2+by bonding with the carbonyl group to form N–Zn–O bond.Benefit from the multiple highly active chemisorption sites generated by the synergy between carbonyl groups and pyridine/pyrrole nitrogen atoms,the resulting carbon nanofibers film cathode displays a high energy density,an ultralong-term lifespan,and excellent capacity reservation under commercial mass loading(14.45 mg cm-2).Particularly,the cathodes can also operate stably in flexible or quasi-solid devices,indicating its application potential in flexible electronic products.This work established a universal method to solve the bottleneck problem of insufficient active adsorption sites of carbon-based ZIHCs.Imoproved should be changed into Improved.展开更多
In the given work the adsorption properties of molecule curcumin((1 E,6 E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) on CNT(8,0-6) nanotube were investigated by the density functional theory(DFT) in...In the given work the adsorption properties of molecule curcumin((1 E,6 E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) on CNT(8,0-6) nanotube were investigated by the density functional theory(DFT) in the solvent water for the first time. The non-bonded interaction effects of compounds curcumin and CNT(8,0-6) nanotube on the electronic properties, UV/Vis spectra, chemical shift tensors and natural charges were determined and discussed. The electronic spectra of the compound curcumin and the complex CNT(8,0-6)/curcumin in the solvent water were calculated by time dependent density functional theory(TD-DFT) for investigation of the maximum wavelength value of molecule Curcumin before and after the non-bonded interaction with the CNT(8,0-6) nanotube and molecular orbitals involved in the formation of absorption spectrum of the complex CNT(8,0-6)/curcumin at maximum wavelength.展开更多
The adsorption of CH3O and H on the (100) facet of gold was studied using self-consistent periodic density functional theory (DFT-GGA) calculations. The best binding site, energy, and structural parameter, as well as ...The adsorption of CH3O and H on the (100) facet of gold was studied using self-consistent periodic density functional theory (DFT-GGA) calculations. The best binding site, energy, and structural parameter, as well as the local density of states, of each species were determined. CH3O is predicted to strongly adsorb on the bridge and hollow sites, with the bridge site as preferred one, with one of the hydrogen atoms pointing toward a fourfold vacancy (bridge-H hollow). The top site was found to be unstable, the CH3O radical moving to the bridge –H top site during geometry optimization. Adsorption of H is unstable on the hollow site, the atom moving to the bridge site during geometry optimization. The 4-layer slab is predicted to be endothermic with respect to gaseous H2 and a clean Au surface.展开更多
We performed density functional theory calculations of O2, CO2, and H2O chemisorption on the UN(001) surface using the generalized gradient approximation and PW91 exchangecorrelation functional at non-spin polarized...We performed density functional theory calculations of O2, CO2, and H2O chemisorption on the UN(001) surface using the generalized gradient approximation and PW91 exchangecorrelation functional at non-spin polarized level with the periodic slab model. Chemisorption energies vs. molecular distance from UN(001) surface were optimized for four symmetrical chemisorption sites. The results showed that the bridge parallel, hollow parallel and bridge hydrogen-up adsorption sites were the most stable site for O2, CO2, and H2O molecular with chemisorption energies of 14.48, 4.492, and 5.85 kJ/mol, respectively. From the point of adsorbent (the UN(001) surface), interaction of O2 with the UN(001) surface was of the maximum magnitude, then CO2 and H2O, indicating that these interactions were associated with structures of the adsorbate. O2 chemisorption caused N atoms on the surface to migrate into the bulk, however CO2 and H2O had a moderate and negligible effect on the surface, respectively. Calculated electronic density of states demonstrated the electronic charge transfer between s, p orbital in chemisorption molecular and U6d, U5f orbital.展开更多
Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we dem...Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we demonstrate that the surface of two-dimensional Co-based MOF is modified by decorating Ag quantum dots(QDs)simply through in-situ reduction of Ag+ions.Toward oxygen evolution reaction(OER),it reveals that the catalysis is mediated by the reversible redox of Co sites between Co^(3+) and Co^(4+) states coupling with transfer of OHions.The decoration of Ag QDs decreases the redox potential of Co sites,and thus effectively decreases the overpotential of OER.The TOFs of Co sites are increased by 77 times to reach 5.4 s^(-1) at an overpotential of 0.35 V.We attribute the activity enhancement to the tuning of the coupling process between Co sites and OHions during the redox of Co sites by Ag QDs decoration based on Pourbaix analysis.展开更多
The low sulfur utilization and fast capacity fading resulting from the sluggish redox reaction and abominable polysulfides shuttle greatly hinder the practical applications of lithium-sulfur(Li-S) batteries.Herein, we...The low sulfur utilization and fast capacity fading resulting from the sluggish redox reaction and abominable polysulfides shuttle greatly hinder the practical applications of lithium-sulfur(Li-S) batteries.Herein, we develop a facile "in-situ growth" method to decorate ultra-small Mo2 C nanoparticles(USMo2 C) on the surface of Ketjen Black(KB) to functionalize the commercial polypropylene(PP) separators,which can accelerate the redox kinetics of lithium polysulfides conversion and effectively increase the utilization of sulfur for Li-S batteries. Importantly, the US-Mo2 C nanoparticles have abundant sites for chemical adsorption towards polysulfides and the conductive carbon networks of KB have cross-linked pore channels, which can promote electron transport and provide physical barrier and volume expansion space for polysulfides. Due to the combined effects of the US-Mo2 C and KB, Li-S cells employing the multifunctional PP separators modified with KB/US-Mo2 C composite(KB/US-Mo2 C@PP) exhibit a high specific capacity(1212.8 mAh g^(-1) at 0.2 C), and maintain a reversible capacity of 1053.3 m Ah g^(-1) after 100 cycles.More importantly, the KB/US-Mo2 C@PP cells with higher sulfur mass loading of 4.9 mg cm^(-2) have superb areal capacity of 2.3 mAh cm^(-2). This work offers a novel and promising perspective for high-performance Li-S batteries from both the shuttle effect and the complex polysulfides conversion.展开更多
The catalytic properties of non-reducible metal oxides have intrigued continuous interest in the past decades.Often time,catalytic studies of bulk non-reducible oxides focused on their high-temperature applications ow...The catalytic properties of non-reducible metal oxides have intrigued continuous interest in the past decades.Often time,catalytic studies of bulk non-reducible oxides focused on their high-temperature applications owing to their weak interaction with small molecules.Hereby,combining ambient-pressure scanning tunneling microscopy(AP-STM),AP X-ray photoelectron spectroscopy(AP-XPS)and density functional theory(DFT)calculations,we studied the activation of CO and CO_(2)on ZnO,a typical nonreducible oxide and major catalytic material in the conversion of C1 molecules.By visualizing the chemical processes on ZnO surfaces at the atomic scale under AP conditions,we showed that new adsorbate structures induced by the enhanced physisorption and the concerted interaction of physisorbed molecules could facilitate the activation of CO and CO_(2)on ZnO.The reactivity of ZnO towards CO could be observed under AP conditions,where an ordered(2×1)–CO structure was observed on ZnO(1010).Meanwhile,chemisorption of CO_(2)on ZnO(1010)under AP conditions was also enhanced by physisorbed CO_(2),which minimizes the repulsion between surface dipoles and causes a(3×1)–CO_(2)structure.Our study has brought molecular insight into the fundamental chemistry and catalytic properties of ZnO surfaces under realistic reaction conditions.展开更多
The chemisorptions of Mo on both Si(111)and Si(100)surfaces are inves tiga ted by the DV-Xct-SCF met hod.The resul ts show that after overcoming a certain energy barrier the adsorbate Mo can penetrate the surface to f...The chemisorptions of Mo on both Si(111)and Si(100)surfaces are inves tiga ted by the DV-Xct-SCF met hod.The resul ts show that after overcoming a certain energy barrier the adsorbate Mo can penetrate the surface to form adamantine structure.The electronic states of chemisorption are calculated and compared with experimental results.展开更多
The aim of this study was to investigate the mechanism of cadmium (Cd) adsorbed by microalgae Chlamydomonas reinhardtii (C.reinhardtii). The kinetic and adsorption isotherm of the process could be well described by ma...The aim of this study was to investigate the mechanism of cadmium (Cd) adsorbed by microalgae Chlamydomonas reinhardtii (C.reinhardtii). The kinetic and adsorption isotherm of the process could be well described by mathematical models. Chemical modification experiments and Fourier transform infrared spectra indicated that carboxyl and amine groups were the important functional groups for adsorption of Cd. The maximum contribution of physical adsorption in the overall adsorption process was evaluated as 5.5%. These results indicated that chemisorption was the dominating mechanism of Cd biosorption by C.reinhardtii.展开更多
We have investigated the interactions between phospholipid monolayers and volatile anest-hatics. Two monolayers (dihexadecyl phosphate (DHP) and dipalmitoyl phosphatidyl choline (DPPC) and two anesthetics (halothane a...We have investigated the interactions between phospholipid monolayers and volatile anest-hatics. Two monolayers (dihexadecyl phosphate (DHP) and dipalmitoyl phosphatidyl choline (DPPC) and two anesthetics (halothane and enflurane) were used to observe these interac-tions using a highly sensitive quartz crystal microbalance (HS-QCM). The concentration of each anesthetic in aqueous solution was kept at 4 mM. The frequency of QCM showed no change when halothane was added to the DHP monolayer, however, it responded and de-creased when interaction occurred with DPPC monolayer. In case of enflurane addition the frequency decreased in both the monolayers of DHP and DPPC. The frequency change followed the following order of monolayer-anesthetic interactions: DHP-halothane <DPPC-halothane <DHP-enflurane <DPPC-enflurane. These re-sults showed that the response of anesthetics to the monolayers i.e. the physisorption not only depends on the anesthetic structure, the type of anesthetic hydrate formed, but also the hydrophilic polar group structure of the monolayer or the monolayer/water interface had an important role in physisorption.展开更多
The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactiv...The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactivity on the Fe(111)surface,based on a recently developed six-dimensional potential energy surface.Six-dimensional quantum dynamics study was carried out to investi-gate the effect of vibrational excitation for incidence energy below 1.6 eV,due to sig-nificant quantum effects for this reaction.The effects of vibrational and rotational excitations at high incidence energies were revealed by quasiclassical trajectory calculations.We found that raising the translational energy can enhance the dissociation probability to some extent,however,the vibrational excitation or rotational excitation can promote disso-ciation more efficiently than the same amount of translational energy.This study provides valuable insight into the mode-specific dynamics of this heavy diatom-surface reaction.展开更多
Colloidal gold solutions with nanostars and nanospheres as well as KlariteTM gold and gold-copper bimetallic substrates were used for SERS analysis of aniline and nitroaniline isomers to investigate their chemisorptio...Colloidal gold solutions with nanostars and nanospheres as well as KlariteTM gold and gold-copper bimetallic substrates were used for SERS analysis of aniline and nitroaniline isomers to investigate their chemisorption phenomena. Computational modeling based on Density Functional Theory (DFT) was used in conjunction with the SERS analysis to study the adsorption behaviors of the analytes on metal surfaces. Gold nanospheres and KlariteTM samples produced about a 10-fold increase in signal enhancement compared to gold nanostars for the SERS analysis of aniline, nitroaniline isomers, and nitrobenzene. Signal enhancement is significantly greater for aniline compared to nitrobenzene and it is dependent on the proximity of the NH2 to the NO2 group for the nitroaniline isomers. Charge-transfer in chemisorbed analytes is an important contributing factor for SERS signal. The relative strengths of enhancement can be predicted by the DFT calculation of the HOMO-LUMO energy gaps of the analyte-metal cluster. Aniline and the three nitroaniline isomers showed stronger preference for the copper substrates if both the gold and copper substrates are present. The NO2 group in 2-nitroaniline has a very strong preference and affinity for the copper in the Au-Cu bimetallic cluster.展开更多
We performed density functional theory calculations of H, C, and O chemisorption on the UN(001) and(111) surfaces using the generalized gradient approximation(GGA) and the Hubbard U parameter and revised Perdew-Burke-...We performed density functional theory calculations of H, C, and O chemisorption on the UN(001) and(111) surfaces using the generalized gradient approximation(GGA) and the Hubbard U parameter and revised Perdew-Burke-Ernzerhof(RPBE) exchange-correlation functional at non-spin polarized level with the periodic slab model. Chemisorption energies vs. distance of molecules from UN(001) and UN(111) surfaces have been optimized for four symmetrical chemisorption sites, respectively. The results show that the Hollow, N-top, and Hollow adsorption sites are the most stable sites for H, C, and O atoms with chemisorption energies of 13.06,25.50 and 27.34 kJ/mol for UN(001) surface, respectively. From the point of adsorbent(UN(001) and UN(111)surfaces in this paper), interaction of O with the chemisorbed surface is of the maximum magnitude, then C and H, which are in agreement with electronegativities of individual atoms. For the UN(001) surface, U-N bond lengths change relatively little(< 9%) as a result of H chemisorption, however C and O chemisorptions result in remarkable changes for U-N bond lengths in interlayer(> 10%). Electronic structure calculations indicate that Bridge position is equivalent with Hollow position, and the most stable chemisorption position for H, C,and O atoms are all Bridge(or Hollow) position for the UN(111) surface. Calculated electronic density of states(DOSs) demonstrate electronic charge transfer between s, p orbitals in chemisorbed atoms and U 6d, 5f orbitals.展开更多
The chemisorption intensities of NH_3 and CO on aluminum clusters A1_n(n=l-13) have been theoretically predicted by using CNDO/2 method and properly selecting the clusters' geometries.The results show that the che...The chemisorption intensities of NH_3 and CO on aluminum clusters A1_n(n=l-13) have been theoretically predicted by using CNDO/2 method and properly selecting the clusters' geometries.The results show that the chemisorptions of NH_3 and GO on Al_2,Al_6 and Al_12 are magically stable and thus are in good agreement with the experimental results.In addition,an electronic structure analysis is made to expound the nature of such a size effect.展开更多
The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability ...The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability s<sub>o</sub> increases linearly from 0 to 0.03 as normal component of translational energy of the molecuar beam E<sub>n</sub> increases from 11.00 to 19.91 kcal/mol for N<sub>2</sub>/Ni system and S<sub>0</sub> from 0 to 0. 10 as E<sub>n</sub> from 10. 40 to 19.91 kcal/mol for N<sub>2</sub>/La system. The apparent activation energy △E are 6.16 kcal/mol and 5.30 kcal/mol for N<sub>2</sub>/Ni and N<sub>2</sub>/La systems respectively.展开更多
The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were ...The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 50571071).
文摘An atomic group model of the disordered binary alloy Rhx-Pt1-x has been constructed to investigate surface segregation. According to the model, we have calculated the electronic structure of the Rhx-Pt1-x alloy surface by using the recursion method when O atoms are adsorbed on the Rhx-Pt1-x (110) surface under the condition of coverage 0.5. The calculation results indicate that the chemical adsorption of O changes greatly the density of states near the Fermi level, and the surface segregation exhibits a reversal behaviour. In addition, when x 〈 0.3, the surface on which O is adsorbed displays the property of Pt; whereas when x 〉 0.3 it displays the property of Rh.
基金Supported by the Natural Science Foundation of Zhejiang Province (No. 299015), the Development Plan of Youth Mainstay Teacher of the Education Ministry of China and the Special Foundation for Youth Talent by Zhejiang (RC9702).
文摘The effects of promoters K, Ba, Sm on the chemisorption and desorption of hydrogen and nitrogen, dispersion of metallic Ru. and catalytic activity of active carbon (AC) supported ruthenium catalyst for ammonia synthesis have been studied by means of pulse chromatography, temperature-programmed desorption, and activity test. Promoters K, Ba and Sm increased the activity of Ru/AC catalysts for ammonia synthesis significantly, and particularly, potassium exhibited the best promotion on the activity because of the strong electronic donation to metallic Ru. Much higher activity can be obtained for Ru/AC catalyst with binary or triple promoters. The activity of Ru/AC catalyst is dependent on the adsorption of hydrogen and nitrogen. The high activity of catalyst could be ascribed to strong dissociation of nitrogen on the catalyst surface. Strong adsorption of hydrogen would inhibit the adsorption of nitrogen, resulted in decrease of the catalytic activity. Ru/AC catalyst promoted by Sm2O3 shows the best dispersion of metallic Ru, since the partly reduced SmOx on the surface modifies the morphology of active sites and favors the dispersion of metallic Ru. The activity of Ru/AC catalysts is in accordance to the corresponding amount of nitrogen chemisorption and the desorption activation energy of nitrogen. The desorption activation energy for nitrogen decreases in the order of Ru>Ru-Ba>Ru-Sm>Ru-Ba-Sm>Ru-K>Ru-K-Sm>Ru-K-Ba>Ru-K-Ba-Sm, just opposite to the order of catalytic activity, suggesting that the ammonia synthesis over Ru-based catalyst is controlled by the step of dissociation of nitrogen.
基金funds from the National Natural Science Foundation of China(51772082,51804106,and 51574117)the Natural Science Foundation of Hunan Province(2019JJ30002,2019JJ50061 and 2020CB1007)Natural Science Foundation of Guangdong Providence(2018A030310571)。
文摘Carbon nanofibers films are typical flexible electrode in the field of energy storage,but their application in Zinc-ion hybrid capacitors(ZIHCs)is limited by the low energy density due to the lack of active adsorption sites.In this work,an in-situ exfoliation strategy is reported to modulate the chemisorption sites of carbon nanofibers by high pyridine/pyrrole nitrogen doping and carbonyl functionalization.The experimental results and theoretical calculations indicate that the highly electronegative pyridine/pyrrole nitrogen dopants can not only greatly reduce the binding energy between carbonyl group and Z n2+by inducing charge delocalization of the carbonyl group,but also promote the adsorption of Zn2+by bonding with the carbonyl group to form N–Zn–O bond.Benefit from the multiple highly active chemisorption sites generated by the synergy between carbonyl groups and pyridine/pyrrole nitrogen atoms,the resulting carbon nanofibers film cathode displays a high energy density,an ultralong-term lifespan,and excellent capacity reservation under commercial mass loading(14.45 mg cm-2).Particularly,the cathodes can also operate stably in flexible or quasi-solid devices,indicating its application potential in flexible electronic products.This work established a universal method to solve the bottleneck problem of insufficient active adsorption sites of carbon-based ZIHCs.Imoproved should be changed into Improved.
基金supported by the National Academy of Sciences of Belarus
文摘In the given work the adsorption properties of molecule curcumin((1 E,6 E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) on CNT(8,0-6) nanotube were investigated by the density functional theory(DFT) in the solvent water for the first time. The non-bonded interaction effects of compounds curcumin and CNT(8,0-6) nanotube on the electronic properties, UV/Vis spectra, chemical shift tensors and natural charges were determined and discussed. The electronic spectra of the compound curcumin and the complex CNT(8,0-6)/curcumin in the solvent water were calculated by time dependent density functional theory(TD-DFT) for investigation of the maximum wavelength value of molecule Curcumin before and after the non-bonded interaction with the CNT(8,0-6) nanotube and molecular orbitals involved in the formation of absorption spectrum of the complex CNT(8,0-6)/curcumin at maximum wavelength.
文摘The adsorption of CH3O and H on the (100) facet of gold was studied using self-consistent periodic density functional theory (DFT-GGA) calculations. The best binding site, energy, and structural parameter, as well as the local density of states, of each species were determined. CH3O is predicted to strongly adsorb on the bridge and hollow sites, with the bridge site as preferred one, with one of the hydrogen atoms pointing toward a fourfold vacancy (bridge-H hollow). The top site was found to be unstable, the CH3O radical moving to the bridge –H top site during geometry optimization. Adsorption of H is unstable on the hollow site, the atom moving to the bridge site during geometry optimization. The 4-layer slab is predicted to be endothermic with respect to gaseous H2 and a clean Au surface.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.51271198) and Self- Topics Fund of Xi'an Research Institute of High Technology (No.YX2012cxpy06). Ru-song Li would like to thank Wen Li from Xi'an Research Institute of Hi-Tech for useful discussions and studentship support.
文摘We performed density functional theory calculations of O2, CO2, and H2O chemisorption on the UN(001) surface using the generalized gradient approximation and PW91 exchangecorrelation functional at non-spin polarized level with the periodic slab model. Chemisorption energies vs. molecular distance from UN(001) surface were optimized for four symmetrical chemisorption sites. The results showed that the bridge parallel, hollow parallel and bridge hydrogen-up adsorption sites were the most stable site for O2, CO2, and H2O molecular with chemisorption energies of 14.48, 4.492, and 5.85 kJ/mol, respectively. From the point of adsorbent (the UN(001) surface), interaction of O2 with the UN(001) surface was of the maximum magnitude, then CO2 and H2O, indicating that these interactions were associated with structures of the adsorbate. O2 chemisorption caused N atoms on the surface to migrate into the bulk, however CO2 and H2O had a moderate and negligible effect on the surface, respectively. Calculated electronic density of states demonstrated the electronic charge transfer between s, p orbital in chemisorption molecular and U6d, U5f orbital.
基金gratefully acknowledge the financial support from the National Natural Science Foundation of China(51802265,22002119)the Fundamental Research Funds for the Central Universities of China+2 种基金the Initiative Postdocs Supporting Program(BX20190281)the General Program,Science and Technology Program of Taicang,China(TC2020JC01)the National Natural Science Foundation of Jiangsu,China(BK20200261)。
文摘Interfacial engineering to alter the configuration of active sites in heterogeneous catalysts is a potential strategy for activity enhancement,but it remains unelucidated for metal-organic frameworks(MOFs).Here,we demonstrate that the surface of two-dimensional Co-based MOF is modified by decorating Ag quantum dots(QDs)simply through in-situ reduction of Ag+ions.Toward oxygen evolution reaction(OER),it reveals that the catalysis is mediated by the reversible redox of Co sites between Co^(3+) and Co^(4+) states coupling with transfer of OHions.The decoration of Ag QDs decreases the redox potential of Co sites,and thus effectively decreases the overpotential of OER.The TOFs of Co sites are increased by 77 times to reach 5.4 s^(-1) at an overpotential of 0.35 V.We attribute the activity enhancement to the tuning of the coupling process between Co sites and OHions during the redox of Co sites by Ag QDs decoration based on Pourbaix analysis.
基金financially supported by the National Natural Science Foundation of China for Innovative Research Groups (No. 51621002)the National Key Research and Development Program of China (Grant No. 2016YFA0203700)+5 种基金NSFC (Grant No 51672083)Program of Shanghai Academic/Technology Research Leader (18XD1401400)Basic Research Program of Shanghai (17JC1404702)Leading talents in Shanghai in 2018The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the 111 project (B14018)The Fundamental Research Funds for Central Universities (222201718002)。
文摘The low sulfur utilization and fast capacity fading resulting from the sluggish redox reaction and abominable polysulfides shuttle greatly hinder the practical applications of lithium-sulfur(Li-S) batteries.Herein, we develop a facile "in-situ growth" method to decorate ultra-small Mo2 C nanoparticles(USMo2 C) on the surface of Ketjen Black(KB) to functionalize the commercial polypropylene(PP) separators,which can accelerate the redox kinetics of lithium polysulfides conversion and effectively increase the utilization of sulfur for Li-S batteries. Importantly, the US-Mo2 C nanoparticles have abundant sites for chemical adsorption towards polysulfides and the conductive carbon networks of KB have cross-linked pore channels, which can promote electron transport and provide physical barrier and volume expansion space for polysulfides. Due to the combined effects of the US-Mo2 C and KB, Li-S cells employing the multifunctional PP separators modified with KB/US-Mo2 C composite(KB/US-Mo2 C@PP) exhibit a high specific capacity(1212.8 mAh g^(-1) at 0.2 C), and maintain a reversible capacity of 1053.3 m Ah g^(-1) after 100 cycles.More importantly, the KB/US-Mo2 C@PP cells with higher sulfur mass loading of 4.9 mg cm^(-2) have superb areal capacity of 2.3 mAh cm^(-2). This work offers a novel and promising perspective for high-performance Li-S batteries from both the shuttle effect and the complex polysulfides conversion.
基金financially supported by the Ministry of Science and Technology of China(2018YFA0208603)the National Natural Science Foundation of China(21972144,91545204,91845109,91945302,22002090)+2 种基金the Chinese Academy of Sciences(QYZDJSSW-SLH054)the K.C.Wong Education(GJTD-2020-15)supported by ME2 project under contract no.11227902 from National Natural Science Foundation of China。
文摘The catalytic properties of non-reducible metal oxides have intrigued continuous interest in the past decades.Often time,catalytic studies of bulk non-reducible oxides focused on their high-temperature applications owing to their weak interaction with small molecules.Hereby,combining ambient-pressure scanning tunneling microscopy(AP-STM),AP X-ray photoelectron spectroscopy(AP-XPS)and density functional theory(DFT)calculations,we studied the activation of CO and CO_(2)on ZnO,a typical nonreducible oxide and major catalytic material in the conversion of C1 molecules.By visualizing the chemical processes on ZnO surfaces at the atomic scale under AP conditions,we showed that new adsorbate structures induced by the enhanced physisorption and the concerted interaction of physisorbed molecules could facilitate the activation of CO and CO_(2)on ZnO.The reactivity of ZnO towards CO could be observed under AP conditions,where an ordered(2×1)–CO structure was observed on ZnO(1010).Meanwhile,chemisorption of CO_(2)on ZnO(1010)under AP conditions was also enhanced by physisorbed CO_(2),which minimizes the repulsion between surface dipoles and causes a(3×1)–CO_(2)structure.Our study has brought molecular insight into the fundamental chemistry and catalytic properties of ZnO surfaces under realistic reaction conditions.
基金supported by the National Science Foundation of China。
文摘The chemisorptions of Mo on both Si(111)and Si(100)surfaces are inves tiga ted by the DV-Xct-SCF met hod.The resul ts show that after overcoming a certain energy barrier the adsorbate Mo can penetrate the surface to form adamantine structure.The electronic states of chemisorption are calculated and compared with experimental results.
基金supported by Beijing Elitist Foundation (Grant no. 2005IA05016012) Beijing New Century Talent Foundation (Grant no. 011 005400601)
文摘The aim of this study was to investigate the mechanism of cadmium (Cd) adsorbed by microalgae Chlamydomonas reinhardtii (C.reinhardtii). The kinetic and adsorption isotherm of the process could be well described by mathematical models. Chemical modification experiments and Fourier transform infrared spectra indicated that carboxyl and amine groups were the important functional groups for adsorption of Cd. The maximum contribution of physical adsorption in the overall adsorption process was evaluated as 5.5%. These results indicated that chemisorption was the dominating mechanism of Cd biosorption by C.reinhardtii.
文摘We have investigated the interactions between phospholipid monolayers and volatile anest-hatics. Two monolayers (dihexadecyl phosphate (DHP) and dipalmitoyl phosphatidyl choline (DPPC) and two anesthetics (halothane and enflurane) were used to observe these interac-tions using a highly sensitive quartz crystal microbalance (HS-QCM). The concentration of each anesthetic in aqueous solution was kept at 4 mM. The frequency of QCM showed no change when halothane was added to the DHP monolayer, however, it responded and de-creased when interaction occurred with DPPC monolayer. In case of enflurane addition the frequency decreased in both the monolayers of DHP and DPPC. The frequency change followed the following order of monolayer-anesthetic interactions: DHP-halothane <DPPC-halothane <DHP-enflurane <DPPC-enflurane. These re-sults showed that the response of anesthetics to the monolayers i.e. the physisorption not only depends on the anesthetic structure, the type of anesthetic hydrate formed, but also the hydrophilic polar group structure of the monolayer or the monolayer/water interface had an important role in physisorption.
基金supported by the National Key R&D Program of China(No.2018YFE0203003)the National Natural Science Foundation of China(No.22173099 and No.22173101)the Liaoning Revitalization Talents Program(No.XLYC1907190)。
文摘The dissociative chemisorption of N_(2) is the rate-limiting step for ammonia synthesis in industry.Here,we investigated the role of initially vibrational excitation and ro-tational excitation of N_(2) for its reactivity on the Fe(111)surface,based on a recently developed six-dimensional potential energy surface.Six-dimensional quantum dynamics study was carried out to investi-gate the effect of vibrational excitation for incidence energy below 1.6 eV,due to sig-nificant quantum effects for this reaction.The effects of vibrational and rotational excitations at high incidence energies were revealed by quasiclassical trajectory calculations.We found that raising the translational energy can enhance the dissociation probability to some extent,however,the vibrational excitation or rotational excitation can promote disso-ciation more efficiently than the same amount of translational energy.This study provides valuable insight into the mode-specific dynamics of this heavy diatom-surface reaction.
文摘Colloidal gold solutions with nanostars and nanospheres as well as KlariteTM gold and gold-copper bimetallic substrates were used for SERS analysis of aniline and nitroaniline isomers to investigate their chemisorption phenomena. Computational modeling based on Density Functional Theory (DFT) was used in conjunction with the SERS analysis to study the adsorption behaviors of the analytes on metal surfaces. Gold nanospheres and KlariteTM samples produced about a 10-fold increase in signal enhancement compared to gold nanostars for the SERS analysis of aniline, nitroaniline isomers, and nitrobenzene. Signal enhancement is significantly greater for aniline compared to nitrobenzene and it is dependent on the proximity of the NH2 to the NO2 group for the nitroaniline isomers. Charge-transfer in chemisorbed analytes is an important contributing factor for SERS signal. The relative strengths of enhancement can be predicted by the DFT calculation of the HOMO-LUMO energy gaps of the analyte-metal cluster. Aniline and the three nitroaniline isomers showed stronger preference for the copper substrates if both the gold and copper substrates are present. The NO2 group in 2-nitroaniline has a very strong preference and affinity for the copper in the Au-Cu bimetallic cluster.
基金Supported by National Natural Science Foundation of China(Nos.51401237,51271198 and 11474358)Self-Topics Fund of Xi’an Research Institute of High Technology(Nos.2014QNJJ018 and YX2012cxpy06)
文摘We performed density functional theory calculations of H, C, and O chemisorption on the UN(001) and(111) surfaces using the generalized gradient approximation(GGA) and the Hubbard U parameter and revised Perdew-Burke-Ernzerhof(RPBE) exchange-correlation functional at non-spin polarized level with the periodic slab model. Chemisorption energies vs. distance of molecules from UN(001) and UN(111) surfaces have been optimized for four symmetrical chemisorption sites, respectively. The results show that the Hollow, N-top, and Hollow adsorption sites are the most stable sites for H, C, and O atoms with chemisorption energies of 13.06,25.50 and 27.34 kJ/mol for UN(001) surface, respectively. From the point of adsorbent(UN(001) and UN(111)surfaces in this paper), interaction of O with the chemisorbed surface is of the maximum magnitude, then C and H, which are in agreement with electronegativities of individual atoms. For the UN(001) surface, U-N bond lengths change relatively little(< 9%) as a result of H chemisorption, however C and O chemisorptions result in remarkable changes for U-N bond lengths in interlayer(> 10%). Electronic structure calculations indicate that Bridge position is equivalent with Hollow position, and the most stable chemisorption position for H, C,and O atoms are all Bridge(or Hollow) position for the UN(111) surface. Calculated electronic density of states(DOSs) demonstrate electronic charge transfer between s, p orbitals in chemisorbed atoms and U 6d, 5f orbitals.
文摘The chemisorption intensities of NH_3 and CO on aluminum clusters A1_n(n=l-13) have been theoretically predicted by using CNDO/2 method and properly selecting the clusters' geometries.The results show that the chemisorptions of NH_3 and GO on Al_2,Al_6 and Al_12 are magically stable and thus are in good agreement with the experimental results.In addition,an electronic structure analysis is made to expound the nature of such a size effect.
基金Project supportec by the National Natural Science Foundation of China
文摘The activated chemisorption of N<sub>2</sub> on Ni (poly) and La film was performed on a molecular beam—surface scattering apparatus. Experimental results indicate that the initial sticking probability s<sub>o</sub> increases linearly from 0 to 0.03 as normal component of translational energy of the molecuar beam E<sub>n</sub> increases from 11.00 to 19.91 kcal/mol for N<sub>2</sub>/Ni system and S<sub>0</sub> from 0 to 0. 10 as E<sub>n</sub> from 10. 40 to 19.91 kcal/mol for N<sub>2</sub>/La system. The apparent activation energy △E are 6.16 kcal/mol and 5.30 kcal/mol for N<sub>2</sub>/Ni and N<sub>2</sub>/La systems respectively.
文摘The studies of NO chemisorption on TiO2(110) surface are the base of research to NO decomposed to N2O on TiO2 surface. In this paper, 12 kinds of possible models of NO adsorbed on TiO2 perfect and defect surface were calculated by use of ab initio cluster method. We carried out optimization of the geometry, calculation of the chemisorption energy and analysis of the Mulliken population to those adsorption models. According to the calculation results, it can be got that the adsorbed decomposition of NO on defect surface is more advantageous and M6 and M12 are the important models to NO chemisorption and decomposition on TiO2 surface.