Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability an...Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations.Furthermore,monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors.In this study,based on our discovery that spore shell(SS)of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity,we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy,chemodynamic therapy and antitumor immunity for synergistic cancer treatment.In detail,SS is separated from probiotic spores and then attached to the surface of liposome(Lipo)that was loaded with hemoglobin(Hb),glucose oxidase(GOx)and JQ1to construct SS@Lipo/Hb/GOx/JQ1.In tumor tissue,highly toxic hydroxyl radicals(·OH)are generated via sequential catalytic reactions:GOx catalyzing glucose into H_(2)O_(2)and Fe^(2+)in Hb decomposing H_(2)O_(2)into·OH.The combination of·OH and SS adjuvant can improve tumor immunogenicity and activate immune system.Meanwhile,JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response.In this manner,SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis.To summarize,the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.展开更多
The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly effi...The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.展开更多
Once bone metastasis occurs in lung cancer,the efficiency of treatment can be greatly reduced.Current mainstream treatments are focused on inhibiting cancer cell growth and preventing bone destruction.Microwave ablati...Once bone metastasis occurs in lung cancer,the efficiency of treatment can be greatly reduced.Current mainstream treatments are focused on inhibiting cancer cell growth and preventing bone destruction.Microwave ablation(MWA)has been used to treat bone tumors.However,MWA may damage the surrounding normal tissues.Therefore,it could be beneficial to develop a nanocarrier combined with microwave to treat bone metastasis.Herein,a microwave-responsive nanoplatform(MgFe_(2)O_(4)@ZOL)was constructed.MgFe_(2)O_(4)ZOL NPs release the cargos of Fe^(3+),Mg^(2+)and zoledronic acid(ZOL)in the acidic tumor microenvironment(TME).Fe^(3+)can deplete intracellular glutathione(GSH)and catalyze H_(2)O_(2)to generate•OH,resulting in chemodynamic therapy(CDT).In addition,the microwave can significantly enhance the production of reactive oxygen species(ROS),thereby enabling the effective implementation of microwave dynamic therapy(MDT).Moreover,Mg^(2+)and ZOL promote osteoblast differentiation.In addition,MgFe_(2)O_(4)ZOL NPs could target and selectively heat tumor tissue and enhance the effect of microwave thermal therapy(MTT).Both in vitro and in vivo experiments revealed that synergistic targeting,GSH depletion-enhanced CDT,MDT,and selective MTT exhibited significant antitumor efficacy and bone repair.This multimodal combination therapy provides a promising strategy for the treatment of bone metastasis in lung cancer patients.展开更多
In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction(i.e.,chemodynamic therapy,CDT)has been attracted more attentions in recent years,the limited Fenton reaction efficiency is the...In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction(i.e.,chemodynamic therapy,CDT)has been attracted more attentions in recent years,the limited Fenton reaction efficiency is the important obstacle to further application in clinic.Herein,we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin(FeO/MoS2-BSA)with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared(NIR II)light.In the tumor microenvironments,the MoS2 nanosheets not only can accelerate the conversion of Fe3+ions to Fe2+ions by Mo4+ions on their surface to improve Fenton reaction efficiency,but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy(PTT).Consequently,benefiting from the synergetic-enhanced CDT/PTT,the tumors are eradicated completely in vivo.This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.展开更多
Glioblastoma(GBM) remains a formidable challenge in oncology.Chemodynamic therapy(CDT) that triggers tumor cell death by reactive oxygen species(ROS) could open up a new door for GBM treatment.Herein,we report a novel...Glioblastoma(GBM) remains a formidable challenge in oncology.Chemodynamic therapy(CDT) that triggers tumor cell death by reactive oxygen species(ROS) could open up a new door for GBM treatment.Herein,we report a novel CDT nanoagent.Hemoglobin(Hb)and glucose oxidase(GOx) were employed as powerful CDT catalysts.Instead of encapsulating the proteins in drug delivery nanocarriers,we formulate multimeric superstructures as self-delivery entities by crosslinking techniques.Red blood cell(RBC) membranes are camouflaged on the protein superstructures to promote the delivery across blood-brain barrier.The as-prepared RBC@Hb@GOx nanoparticles(NPs) offer superior biocompatibility,simplified structure,and high accumulation at the tumor site.We successfully demonstrated that the NPs could efficiently produce toxic ROS to kill U87 MG cancer cells in vitro and inhibit the growth of GBM tumor in vivo,suggesting that the new CDT nanoagent holds great promise for treating GBM.展开更多
Catalysis-based chemodynamic therapy(CDT)is an emerging cancer treatment strategy which uses a Fenton-like reaction to kill tumor cells by catalyzing endogenous hydrogen peroxide(H_(2)O_(2))into a toxic hydroxyl radic...Catalysis-based chemodynamic therapy(CDT)is an emerging cancer treatment strategy which uses a Fenton-like reaction to kill tumor cells by catalyzing endogenous hydrogen peroxide(H_(2)O_(2))into a toxic hydroxyl radical(·OH).The performance of CDT is greatly dependent on PDT agent.Herein,mitochondria-targeting Pt nanoclusters were synthesized using cytochrome c aptamer(CytcApt)as template.The obtained CytcApt-PtNCs can produce.OH by H_(2)O_(2)under the acidic conditions.Moreover,CytcApt-PtNCs could kill 4T1 tumor cells in a pH-dependent manner,but had no side effect on normal 293T cells.Therefore,CytcApt-PtNCs possess excellent therapeutic effect and good biosafety,indicating their great potential for CDT.展开更多
Chemodynamic therapy(CDT),an inventive approach to cancer treatment,exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species(ROS).While offering advantages over conven...Chemodynamic therapy(CDT),an inventive approach to cancer treatment,exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species(ROS).While offering advantages over conventional treatments,the optimization of CDT efficacy presents challenges stemming from suboptimal catalytic efficiency and the counteractive ROS scavenging effect of intracellular glutathione(GSH).In this study,we aim to address this dual challenge by delving into the role of copper valence states in CDT.Leveraging the unique attributes of copper-based nanoparticles,especially zero-valent copper nanoparticles(CuPd NPs),we aim to enhance the therapeutic potential of CDT.Our experiments reveal that zero-valent CuPd NPs outperform divalent copper nanoparticles(Ox-CuPd NPs)by displaying superior catalytic performance and sustaining ROS generation through a dual approach integrating peroxidase-like(POD-like)activity and Cu+release.Notably,zero-valent NPs exhibit enhanced GSH depletion compared to their divalent counterparts,thereby intensifying CDT and inducing ferroptosis,ultimately resulting in high-efficiency tumor growth inhibition.These findings reveal the impact of valences on CDT,providing novel insights for the optimization and design of CDT agents.展开更多
The inadequate quantity of hydrogen peroxide(H_(2)O_(2))in cancer cells promptly results in the constrained success of chemodynamic therapy(CDT).Significant efforts made throughout the years;nevertheless,researchers a...The inadequate quantity of hydrogen peroxide(H_(2)O_(2))in cancer cells promptly results in the constrained success of chemodynamic therapy(CDT).Significant efforts made throughout the years;nevertheless,researchers are still facing the great challenge of designing a CDT agent and securing H_(2)O_(2) supply within the tumor cell.In this study,taking advantage of H_(2)O_(2) level maintenance mechanism in cancer cells,a nanozyme-based bimetallic metal-organic frameworks(MOFs)tandem reactor is fabricated to elevate intracellular H_(2)O_(2) levels,thereby enhancing CDT.In addition,under nearinfrared excitation,the upconversion nanoparticles(UCNPs)loaded into the MOFs can perform photocatalysis and generate hydrogen,which increases cellular susceptibility to radicals induced from H_(2)O_(2),inhibits cancer cell energy,causes DNA damages and induces tumor cell apoptosis,thus improving CDT therapeutic efficacy synergistically.The proposed nanozyme-based bimetallic MOFs-mediated CDT and UCNPs-mediated hydrogen therapy act as combined therapy with high efficacy and low toxicity.展开更多
Combining photodynamic therapy(PDT)with chemodynamic therapy(CDT)has been proven to be a promising strategy to improve the treatment efficiency of cancer,because of the synergistic therapeutic effect arising between t...Combining photodynamic therapy(PDT)with chemodynamic therapy(CDT)has been proven to be a promising strategy to improve the treatment efficiency of cancer,because of the synergistic therapeutic effect arising between the two modalities.Herein,we report an inorganic nanoagent based on ternary NiCoTi-layered double hydroxide(NiCoTi-LDH)nanosheets to realize highly efficient photodynamic/chemodynamic synergistic therapy.The NiCoTi-LDH nanosheets exhibit oxygen vacancy-promoted electron-hole separation and photogenerated holeinduced O_(2)-independent reactive oxygen species(ROS)generation under acidic circumstances,realizing in situ pH-responsive PDT.Moreover,due to the effective conversion between Co^(3+)and Co^(2+)caused by photogenerated electrons,the NiCoTi-LDH nanosheets catalyze the release of hydroxyl radicals(-OH)from H_(2)O_(2)through Fenton reactions,resulting in CDT.Laser irradiation enhances the catalyzed ability of the NiCoTi-LDH nanosheets to promote the ROS generation,resulting in a better performance than TiO_(2)nanoparticles at pH 6.5.In vitro and in vivo experimental results show conclusively that NiCoTi-LDH nanosheets plus irradiation lead to efficient cell apoptosis and significant inhibition of tumor growth.This study reports a new pH-responsive inorganic nanoagent with oxygen vacancy-promoted photodynamic/chemodynamic synergistic performance,offering a potentially appealing clinical strategy for selective tumor elimination.展开更多
Chemodynamic therapy(CDT)combined with dual phototherapy(photothermal therapy(PTT)and photodynamic therapy(PDT))is an efficient way to synergistically improve anti-tumor efficacy.However,the combination of multiple mo...Chemodynamic therapy(CDT)combined with dual phototherapy(photothermal therapy(PTT)and photodynamic therapy(PDT))is an efficient way to synergistically improve anti-tumor efficacy.However,the combination of multiple modes often makes the composition of the system more complex,which is not conducive to clinical application.In this study,a dual phototherapy ligand carboxyl-modified Aza-BODIPY(BOD-COOH)and metal active center Cu^(2+)were used to construct multiple-modes metalphotosensitizer nanoparticles(BOD-Cu NPs)via one-step coordination self-assembly for combination therapy of CDT/PDT/PTT.In order to improve delivery efficiency,the targeted hydrophilic molecule pyridinemodified glucose derivative(G-Py)was synthesized and coated onto the BOD-Cu NPs to form a glycosylated nano metal-photosensitizer BOD-Cu@G by electrostatic interaction.The Cu^(2+)in BOD-Cu@G could not only be used as a coordination node for metal-driven self-assembly but also consume intracellular glutathione(GSH),and then catalyze Fenton-like reaction to generate hydroxyl radical(·OH)for CDT.In vitro and in vivo studies revealed that BOD-Cu@G could achieve excellent anti-tumor efficiency by CDTenhanced dual phototherapy.展开更多
Cancer is a leading cause of death worldwide,and a series of strategies has been reported for tumor-specific therapy.Currently,chemodynamic therapy(CDT)has become a research hotspot for antitumor treatment due to its ...Cancer is a leading cause of death worldwide,and a series of strategies has been reported for tumor-specific therapy.Currently,chemodynamic therapy(CDT)has become a research hotspot for antitumor treatment due to its advantages of high specificity,endogenous stimulation,and high biosafety.However,the therapeutic effects of CDT are normally limited in the complex tumor microenvironment(TME),such as insufficient acidity,tumor hypoxia,low hydrogen peroxide(H2O2),and high glutathione(GSH).Consequently,different kinds of multifunctional nanomaterials have been designed to manipulate TME conditions,which provided more opportunities to improve the efficiency of CDT.This review focuses on nanomaterial-based strategies for enhancing CDT through manipulating TME.Upon CDT enhancements,this review would provide a reference for the future development of efficient CDT nanomaterials.展开更多
Copper-based nanomaterials demonstrate promising potential in cancer therapy.Cu^(+) efficiently triggers a Fenton-like reaction and further consumes the high level of glutathione,initiating chemical dynamic therapy(CD...Copper-based nanomaterials demonstrate promising potential in cancer therapy.Cu^(+) efficiently triggers a Fenton-like reaction and further consumes the high level of glutathione,initiating chemical dynamic therapy(CDT)and ferroptosis.Cuproptosis,a newly identified cell death modality that represents a great prospect in cancer therapy,is activated.However,active homeostatic systems rigorously keep copper levels within cells exceptionally low,which hinders the application of cooper nanomaterials-based therapy.Herein,a novel strategy of CRISPR-Cas9 RNP nanocarrier to deliver cuprous ions and suppress the expression of copper transporter protein ATP7A for maintaining a high level of copper in cytoplasmic fluid is developed.The Cu_(2)O and organosilica shell would degrade under the high level of glutathione and weak acidic environment,further releasing RNP and Cu^(+).The liberated Cut triggered a Fenton-like reaction for CDT and partially transformed to Cu^(2+),consuming intracellular GSH and initiating cuproptosis and ferroptosis efficiently.Meanwhile,the release of RNP effectively reduced the expression of copper transporter ATP7A,subsequently increasing the accumulation of cooper and enhancing the efficacy of CDT,cuproptosis,and ferroptosis.Such tumor microenvironment responsive multimodal nanoplatform opens an ingenious avenue for colorectal cancer therapy based on gene editing enhanced synergistic cuproptosis/CDT/ferroptosis.展开更多
There are various strategies to conduct tumor microenvironment(TME)stimulus-responsive(e.g.,acid,H_(2)O_(2)or glutathione)nanoreactors for increasing the efficiency of chemodynamic therapy(CDT).Among these,the exploit...There are various strategies to conduct tumor microenvironment(TME)stimulus-responsive(e.g.,acid,H_(2)O_(2)or glutathione)nanoreactors for increasing the efficiency of chemodynamic therapy(CDT).Among these,the exploitation of adenosine triphosphate(ATP,another overexpressed biomarker in TME)-responsive nanoreactors for tumor CDT is still challenging.Herein,the ATP-responsive iron-doped CDs(FeCDs)were firstly prepared and then coassembled with glucose oxidase(GOx)to obtain FeCDs/GOx liposomes as ATP-responsive nanoreactors.Under TME conditions,the nanoreactors initially released FeCDs and GOx.Subsequently,with the existence of ATP,iron ions were rapidly released from the FeCDs to trigger Fenton/Fenton-like reactions for generating·OH.Meanwhile,the T_(1)-weighted magnetic resonance imaging(MRI)was achieved due to the released iron ions.Moreover,the GOx converted endogenous glucose in tumor to gluconic acid and H_(2)O_(2)to satisfy the requirement of·OH generation.In vitro as well as in vivo experiments illustrated that the obtained ATP-responsive CD nanoreactors could be used as a versatile nanotheranostics for simultaneously T_(1)-weighted MRI-guided tumor CDT.This work presents a new ATP-responsive nanoreactor with selfsupplied H_(2)O_(2)for multifunctional nanotheranostic applications.展开更多
基金supported by the National Natural Science Foundation of China(No.82272847,82202318,82304417,82303529)The Henan Province Fund for Cultivating Advantageous Disciplines(No.222301420012)+2 种基金Central Plains science and technology innovation leading talent project(No.234200510005)The project tackling of key scientific and technical problems of Henan Provine(No.232102311163)China Postdoctoral Science Foundation(2022TQ0310,2023TQ0307,2023M730971)。
文摘Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations.Furthermore,monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors.In this study,based on our discovery that spore shell(SS)of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity,we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy,chemodynamic therapy and antitumor immunity for synergistic cancer treatment.In detail,SS is separated from probiotic spores and then attached to the surface of liposome(Lipo)that was loaded with hemoglobin(Hb),glucose oxidase(GOx)and JQ1to construct SS@Lipo/Hb/GOx/JQ1.In tumor tissue,highly toxic hydroxyl radicals(·OH)are generated via sequential catalytic reactions:GOx catalyzing glucose into H_(2)O_(2)and Fe^(2+)in Hb decomposing H_(2)O_(2)into·OH.The combination of·OH and SS adjuvant can improve tumor immunogenicity and activate immune system.Meanwhile,JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response.In this manner,SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis.To summarize,the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.
基金supported by the National Natural Science Foundation of China(22171001,22305001,51972001,52372073)the Natural Science Foundation of Anhui Province of China(2108085MB49).
文摘The realization of real-time thermal feedback for monitoring photothermal therapy(PTT)under near-infrared(NIR)light irradiation is of great interest and challenge for antitumor therapy.Herein,by assembling highly efficient photothermal conversion gold nanorods and a temperature-responsive probe((E)-4-(4-(diethylamino)styryl)-1-methylpyridin-1-ium,PyS)within MOF-199,an intelligent nanoplatform(AMPP)was fabricated for simultaneous chemodynamic therapy and NIR light-induced temperature-feedback PTT.The fluorescence intensity and temperature of the PyS probe are linearly related due to the restriction of the rotation of the characteristic monomethine bridge.Moreover,the copper ions resulting from the degradation of MOF-199 in an acidic microenvironment can convert H_(2)O_(2)into•OH,resulting in tumor ablation through a Fenton-like reaction,and this process can be accelerated by increasing the temperature.This study establishes a feasible platform for fabricating highly sensitive temperature sensors for efficient temperature-feedback PTT.
基金support from National Natural Science Foundation of China(U21A2084)National Key Research and Development Program of China(2021YFC2400704).
文摘Once bone metastasis occurs in lung cancer,the efficiency of treatment can be greatly reduced.Current mainstream treatments are focused on inhibiting cancer cell growth and preventing bone destruction.Microwave ablation(MWA)has been used to treat bone tumors.However,MWA may damage the surrounding normal tissues.Therefore,it could be beneficial to develop a nanocarrier combined with microwave to treat bone metastasis.Herein,a microwave-responsive nanoplatform(MgFe_(2)O_(4)@ZOL)was constructed.MgFe_(2)O_(4)ZOL NPs release the cargos of Fe^(3+),Mg^(2+)and zoledronic acid(ZOL)in the acidic tumor microenvironment(TME).Fe^(3+)can deplete intracellular glutathione(GSH)and catalyze H_(2)O_(2)to generate•OH,resulting in chemodynamic therapy(CDT).In addition,the microwave can significantly enhance the production of reactive oxygen species(ROS),thereby enabling the effective implementation of microwave dynamic therapy(MDT).Moreover,Mg^(2+)and ZOL promote osteoblast differentiation.In addition,MgFe_(2)O_(4)ZOL NPs could target and selectively heat tumor tissue and enhance the effect of microwave thermal therapy(MTT).Both in vitro and in vivo experiments revealed that synergistic targeting,GSH depletion-enhanced CDT,MDT,and selective MTT exhibited significant antitumor efficacy and bone repair.This multimodal combination therapy provides a promising strategy for the treatment of bone metastasis in lung cancer patients.
基金This work was supported by the financial aid from the National Natural Science Foundation of China(Grant Nos.51502284,21834007,21521092,21590794,and 21673220)the Program of Science and Technology Development Plan of Jilin Province of China(No.20170101186JC)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB20030300)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019232).
文摘In spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction(i.e.,chemodynamic therapy,CDT)has been attracted more attentions in recent years,the limited Fenton reaction efficiency is the important obstacle to further application in clinic.Herein,we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin(FeO/MoS2-BSA)with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared(NIR II)light.In the tumor microenvironments,the MoS2 nanosheets not only can accelerate the conversion of Fe3+ions to Fe2+ions by Mo4+ions on their surface to improve Fenton reaction efficiency,but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy(PTT).Consequently,benefiting from the synergetic-enhanced CDT/PTT,the tumors are eradicated completely in vivo.This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.
基金supported by the Villum Fonden, Denmark, Project No. 13153the China Scholarship Council (CSC) for its generous support。
文摘Glioblastoma(GBM) remains a formidable challenge in oncology.Chemodynamic therapy(CDT) that triggers tumor cell death by reactive oxygen species(ROS) could open up a new door for GBM treatment.Herein,we report a novel CDT nanoagent.Hemoglobin(Hb)and glucose oxidase(GOx) were employed as powerful CDT catalysts.Instead of encapsulating the proteins in drug delivery nanocarriers,we formulate multimeric superstructures as self-delivery entities by crosslinking techniques.Red blood cell(RBC) membranes are camouflaged on the protein superstructures to promote the delivery across blood-brain barrier.The as-prepared RBC@Hb@GOx nanoparticles(NPs) offer superior biocompatibility,simplified structure,and high accumulation at the tumor site.We successfully demonstrated that the NPs could efficiently produce toxic ROS to kill U87 MG cancer cells in vitro and inhibit the growth of GBM tumor in vivo,suggesting that the new CDT nanoagent holds great promise for treating GBM.
基金This work is supported by the Cross Research Fund of Biomedical Engineering of Shanghai Jiao Tong University(YG2019QNA43).
文摘Catalysis-based chemodynamic therapy(CDT)is an emerging cancer treatment strategy which uses a Fenton-like reaction to kill tumor cells by catalyzing endogenous hydrogen peroxide(H_(2)O_(2))into a toxic hydroxyl radical(·OH).The performance of CDT is greatly dependent on PDT agent.Herein,mitochondria-targeting Pt nanoclusters were synthesized using cytochrome c aptamer(CytcApt)as template.The obtained CytcApt-PtNCs can produce.OH by H_(2)O_(2)under the acidic conditions.Moreover,CytcApt-PtNCs could kill 4T1 tumor cells in a pH-dependent manner,but had no side effect on normal 293T cells.Therefore,CytcApt-PtNCs possess excellent therapeutic effect and good biosafety,indicating their great potential for CDT.
基金financially supported by the National Key Research and Development Program of China(No.2022YFB3804500)the National Natural Science Foundation of China(Nos.52102354,52102180,52202353,and 52372273)the Science and Technology Development Planning Project of Jilin Province(Nos.20220101070JC,20220508089RC,and 20210402046GH).
文摘Chemodynamic therapy(CDT),an inventive approach to cancer treatment,exploits innate chemical processes to trigger cell death through the generation of reactive oxygen species(ROS).While offering advantages over conventional treatments,the optimization of CDT efficacy presents challenges stemming from suboptimal catalytic efficiency and the counteractive ROS scavenging effect of intracellular glutathione(GSH).In this study,we aim to address this dual challenge by delving into the role of copper valence states in CDT.Leveraging the unique attributes of copper-based nanoparticles,especially zero-valent copper nanoparticles(CuPd NPs),we aim to enhance the therapeutic potential of CDT.Our experiments reveal that zero-valent CuPd NPs outperform divalent copper nanoparticles(Ox-CuPd NPs)by displaying superior catalytic performance and sustaining ROS generation through a dual approach integrating peroxidase-like(POD-like)activity and Cu+release.Notably,zero-valent NPs exhibit enhanced GSH depletion compared to their divalent counterparts,thereby intensifying CDT and inducing ferroptosis,ultimately resulting in high-efficiency tumor growth inhibition.These findings reveal the impact of valences on CDT,providing novel insights for the optimization and design of CDT agents.
基金funded by the National Natural Science Foundation of China(NSFC 81971734,32071323,32271410)the Science and Technology Projects in Fujian Province(2022FX1,2023Y4008)the Open Research Fund of Academy of Advanced Carbon Conversion Technology,Huaqiao University(AACCT0004).
文摘The inadequate quantity of hydrogen peroxide(H_(2)O_(2))in cancer cells promptly results in the constrained success of chemodynamic therapy(CDT).Significant efforts made throughout the years;nevertheless,researchers are still facing the great challenge of designing a CDT agent and securing H_(2)O_(2) supply within the tumor cell.In this study,taking advantage of H_(2)O_(2) level maintenance mechanism in cancer cells,a nanozyme-based bimetallic metal-organic frameworks(MOFs)tandem reactor is fabricated to elevate intracellular H_(2)O_(2) levels,thereby enhancing CDT.In addition,under nearinfrared excitation,the upconversion nanoparticles(UCNPs)loaded into the MOFs can perform photocatalysis and generate hydrogen,which increases cellular susceptibility to radicals induced from H_(2)O_(2),inhibits cancer cell energy,causes DNA damages and induces tumor cell apoptosis,thus improving CDT therapeutic efficacy synergistically.The proposed nanozyme-based bimetallic MOFs-mediated CDT and UCNPs-mediated hydrogen therapy act as combined therapy with high efficacy and low toxicity.
基金National Natural Science Foundation of China(21971007)the Beijing Natural Science Foundation(2212044).C.T+1 种基金thanks the funding support from the National Natural Science Foundation of China(52122002 and 22005259)the Start-Up Grant(9610495)from City University of Hong Kong.
文摘Combining photodynamic therapy(PDT)with chemodynamic therapy(CDT)has been proven to be a promising strategy to improve the treatment efficiency of cancer,because of the synergistic therapeutic effect arising between the two modalities.Herein,we report an inorganic nanoagent based on ternary NiCoTi-layered double hydroxide(NiCoTi-LDH)nanosheets to realize highly efficient photodynamic/chemodynamic synergistic therapy.The NiCoTi-LDH nanosheets exhibit oxygen vacancy-promoted electron-hole separation and photogenerated holeinduced O_(2)-independent reactive oxygen species(ROS)generation under acidic circumstances,realizing in situ pH-responsive PDT.Moreover,due to the effective conversion between Co^(3+)and Co^(2+)caused by photogenerated electrons,the NiCoTi-LDH nanosheets catalyze the release of hydroxyl radicals(-OH)from H_(2)O_(2)through Fenton reactions,resulting in CDT.Laser irradiation enhances the catalyzed ability of the NiCoTi-LDH nanosheets to promote the ROS generation,resulting in a better performance than TiO_(2)nanoparticles at pH 6.5.In vitro and in vivo experimental results show conclusively that NiCoTi-LDH nanosheets plus irradiation lead to efficient cell apoptosis and significant inhibition of tumor growth.This study reports a new pH-responsive inorganic nanoagent with oxygen vacancy-promoted photodynamic/chemodynamic synergistic performance,offering a potentially appealing clinical strategy for selective tumor elimination.
基金supported by the National Natural Science Foundation of China(No.22171230)the Project of Science and Technology of Social Development in Shaanxi Province(No.2023YBSF-151)。
文摘Chemodynamic therapy(CDT)combined with dual phototherapy(photothermal therapy(PTT)and photodynamic therapy(PDT))is an efficient way to synergistically improve anti-tumor efficacy.However,the combination of multiple modes often makes the composition of the system more complex,which is not conducive to clinical application.In this study,a dual phototherapy ligand carboxyl-modified Aza-BODIPY(BOD-COOH)and metal active center Cu^(2+)were used to construct multiple-modes metalphotosensitizer nanoparticles(BOD-Cu NPs)via one-step coordination self-assembly for combination therapy of CDT/PDT/PTT.In order to improve delivery efficiency,the targeted hydrophilic molecule pyridinemodified glucose derivative(G-Py)was synthesized and coated onto the BOD-Cu NPs to form a glycosylated nano metal-photosensitizer BOD-Cu@G by electrostatic interaction.The Cu^(2+)in BOD-Cu@G could not only be used as a coordination node for metal-driven self-assembly but also consume intracellular glutathione(GSH),and then catalyze Fenton-like reaction to generate hydroxyl radical(·OH)for CDT.In vitro and in vivo studies revealed that BOD-Cu@G could achieve excellent anti-tumor efficiency by CDTenhanced dual phototherapy.
基金supported by the National Natural Science Foundation of China(Nos.22274012,21974010)the Fundamental Research Funds for the Central Universities,China(No.2233300007)the Key Project of Science and Technology Plan of Beijing Education Commission,China(No.KZ20231002807).
文摘Cancer is a leading cause of death worldwide,and a series of strategies has been reported for tumor-specific therapy.Currently,chemodynamic therapy(CDT)has become a research hotspot for antitumor treatment due to its advantages of high specificity,endogenous stimulation,and high biosafety.However,the therapeutic effects of CDT are normally limited in the complex tumor microenvironment(TME),such as insufficient acidity,tumor hypoxia,low hydrogen peroxide(H2O2),and high glutathione(GSH).Consequently,different kinds of multifunctional nanomaterials have been designed to manipulate TME conditions,which provided more opportunities to improve the efficiency of CDT.This review focuses on nanomaterial-based strategies for enhancing CDT through manipulating TME.Upon CDT enhancements,this review would provide a reference for the future development of efficient CDT nanomaterials.
基金the National Natural Science Foundation of China(82374287,82174466,81930117)National Key Research and Development Project(2022YFC3500200,China)+3 种基金Key research and development projects of Ningxia(Grant No.2021BEG02040,China)Natural Science Foundation Project of Jiangsu Province(BK20211390,China)Open Projects of the Discipline of Chinese Medicine of Nanjing University of Chinese Medicine Supported by the Subject of Academic priority discipline of Jiangsu Higher Education Institutions,Program for Leading Talents of Traditional Chinese Medicine of Jiangsu Province(SLJ0314)Blue Project of Jiangsu province.
文摘Copper-based nanomaterials demonstrate promising potential in cancer therapy.Cu^(+) efficiently triggers a Fenton-like reaction and further consumes the high level of glutathione,initiating chemical dynamic therapy(CDT)and ferroptosis.Cuproptosis,a newly identified cell death modality that represents a great prospect in cancer therapy,is activated.However,active homeostatic systems rigorously keep copper levels within cells exceptionally low,which hinders the application of cooper nanomaterials-based therapy.Herein,a novel strategy of CRISPR-Cas9 RNP nanocarrier to deliver cuprous ions and suppress the expression of copper transporter protein ATP7A for maintaining a high level of copper in cytoplasmic fluid is developed.The Cu_(2)O and organosilica shell would degrade under the high level of glutathione and weak acidic environment,further releasing RNP and Cu^(+).The liberated Cut triggered a Fenton-like reaction for CDT and partially transformed to Cu^(2+),consuming intracellular GSH and initiating cuproptosis and ferroptosis efficiently.Meanwhile,the release of RNP effectively reduced the expression of copper transporter ATP7A,subsequently increasing the accumulation of cooper and enhancing the efficacy of CDT,cuproptosis,and ferroptosis.Such tumor microenvironment responsive multimodal nanoplatform opens an ingenious avenue for colorectal cancer therapy based on gene editing enhanced synergistic cuproptosis/CDT/ferroptosis.
基金supported by the National Key Research and Development Program of China(2022YFA1207600)National Natural Science Foundation of China(51972315,21873110,52272052,61720106014)project ZR2023QE322 supported by Shandong Provincial Natural Science Foundation。
文摘There are various strategies to conduct tumor microenvironment(TME)stimulus-responsive(e.g.,acid,H_(2)O_(2)or glutathione)nanoreactors for increasing the efficiency of chemodynamic therapy(CDT).Among these,the exploitation of adenosine triphosphate(ATP,another overexpressed biomarker in TME)-responsive nanoreactors for tumor CDT is still challenging.Herein,the ATP-responsive iron-doped CDs(FeCDs)were firstly prepared and then coassembled with glucose oxidase(GOx)to obtain FeCDs/GOx liposomes as ATP-responsive nanoreactors.Under TME conditions,the nanoreactors initially released FeCDs and GOx.Subsequently,with the existence of ATP,iron ions were rapidly released from the FeCDs to trigger Fenton/Fenton-like reactions for generating·OH.Meanwhile,the T_(1)-weighted magnetic resonance imaging(MRI)was achieved due to the released iron ions.Moreover,the GOx converted endogenous glucose in tumor to gluconic acid and H_(2)O_(2)to satisfy the requirement of·OH generation.In vitro as well as in vivo experiments illustrated that the obtained ATP-responsive CD nanoreactors could be used as a versatile nanotheranostics for simultaneously T_(1)-weighted MRI-guided tumor CDT.This work presents a new ATP-responsive nanoreactor with selfsupplied H_(2)O_(2)for multifunctional nanotheranostic applications.