期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Global Solvability,Pattern Formation and Stability to a Chemotaxis-haptotaxis Model with Porous Medium Diffusion
1
作者 Chun Hua JIN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第8期1597-1623,共27页
In this paper,we deal with the following chemotaxis-haptotaxis system modeling cancer invasion with nonlinear diffusion,ut=Δum−χ∇·(u∇v)−ξ∇·(u∇ω)+μu(1−u−ω),inΩ×R^(+),vt−Δv+v=u,inΩ×R+,ωt=−v... In this paper,we deal with the following chemotaxis-haptotaxis system modeling cancer invasion with nonlinear diffusion,ut=Δum−χ∇·(u∇v)−ξ∇·(u∇ω)+μu(1−u−ω),inΩ×R^(+),vt−Δv+v=u,inΩ×R+,ωt=−vω,inΩ×R+,whereΩ⊂R^(N)is a bounded domain.We first supplement the results of global existence and uniform boundedness of solutions for the case m=2N N+2.Then for any m>0 and any spatial dimension,we consider the stability of equilibrium,and find that the chemotaxis has a destabilizing effect,that is for the ODEs,or the diffusion-ODE system without chemotaxis,the solutions tend to a linearly stable uniform steady state(1,1,0).When the chemotactic coefficientχis large,the equilibrium(1,1,0)become unstable.Then we study the existence of nontrivial stationary solutions via bifurcation techniques withχbeing the bifurcation parameter,and obtain nonhomogeneous patterns.At last,we also investigate the stability of these bifurcation solutions. 展开更多
关键词 chemotaxis-haptotaxis porous medium diffusion pattern formation STABILITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部