期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Chen Jingrun's Legacy
1
作者 YI BIAN 《China Today》 1996年第9期16-19,共4页
ChenJingrun'sLegacyByYIBIANYouKun,widowofChenJingrun,andtheshrineshehassetuptoherhusband'smemory.ZhangXuexin... ChenJingrun'sLegacyByYIBIANYouKun,widowofChenJingrun,andtheshrineshehassetuptoherhusband'smemory.ZhangXuexingHAVINGREACHEDfor... 展开更多
关键词 chen jingruns Legacy
下载PDF
A new piecewise linear Chen system of fractional-order:Numerical approximation of stable attractors 被引量:1
2
作者 Marius-F.Danca M.A.Aziz-Alaoui Michael Small 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期216-224,共9页
In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chert system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By... In this paper we present a new version of Chen's system: a piecewise linear (PWL) Chert system of fractional-order. Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By numerical simulations, we reveal chaotic behaviors and also multistability, i.e., the existence of small pararheter windows where, for some fixed bifurcation parameter and depending on initial conditions, coexistence of stable attractors and chaotic attractors is possible. Moreover, we show that by using an algorithm to switch the bifurcation parameter, the stable attractors can be numerically approximated. 展开更多
关键词 PWL chen attractor of fractional-order parameter switching Cellina's theorem Filippov regu-larization sigmoid function bifurcation diagram
下载PDF
关于Smarandache可求和因数对问题 被引量:1
3
作者 李玲 《西安工程大学学报》 CAS 2012年第3期367-369,共3页
对任意正整数n,设d(n)表示n的Dirichlet除数函数,即就是n的所有不同正因数的个数.著名的Smarandache可求和因数对问题是指:是否存在无穷多个正整数m及n,使得d(m)+d(n)=d(m+n),其中(m,n)=1.利用初等方法以及著名的陈景润定理研究这一问题... 对任意正整数n,设d(n)表示n的Dirichlet除数函数,即就是n的所有不同正因数的个数.著名的Smarandache可求和因数对问题是指:是否存在无穷多个正整数m及n,使得d(m)+d(n)=d(m+n),其中(m,n)=1.利用初等方法以及著名的陈景润定理研究这一问题,即证明存在无穷多个正整数m及n且(m,n)≤2,使得d(m)+d(n)=d(m+n),其中(m,n)表示m和n的最大公约数.从而将AmarnathMurthy及Charles Ashbacher提出的一个猜想做出了实质性进展. 展开更多
关键词 F.smarandache可求和因数对 初等方法 陈景润定理 猜想
下载PDF
Chen's theorem in arithmetical progressions
4
作者 陆鸣皋 蔡迎春 《Science China Mathematics》 SCIE 1999年第6期561-569,共9页
LetN be a sufficiently large even integer and $$\begin{gathered} q \geqslant 1, (l_i ,q) = 1 (i = 1, 2), \hfill \\ l_1 + l_2 \equiv N(\bmod q). \hfill \\ \end{gathered} $$ . It is proved that the equation $$N = p + P_... LetN be a sufficiently large even integer and $$\begin{gathered} q \geqslant 1, (l_i ,q) = 1 (i = 1, 2), \hfill \\ l_1 + l_2 \equiv N(\bmod q). \hfill \\ \end{gathered} $$ . It is proved that the equation $$N = p + P_2 ,p \equiv l_1 (\bmod q), P_2 \equiv l_2 (\bmod q)$$ has infinitely many solutions for almost all $q \leqslant N^{\frac{1}{{37}}} $ , wherep is a prime andP 2 is an almost prime with at most two prime factors. 展开更多
关键词 chens theorem sIEVE mean VALUE theorem.
原文传递
A Remark on Chen’s Theorem (Ⅱ)
5
作者 Yingchun CAI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2008年第6期687-698,共12页
Let p denote a prime and P2 denote an almost prime with at most two prime factors. The author proves that for sufficiently large x,∑p≤x p+2=P2 1〉1.13Cx/log^2x,where the constant 1.13 constitutes an improvement of ... Let p denote a prime and P2 denote an almost prime with at most two prime factors. The author proves that for sufficiently large x,∑p≤x p+2=P2 1〉1.13Cx/log^2x,where the constant 1.13 constitutes an improvement of the previous result 1.104 due to J. Wu. 展开更多
关键词 chens theorem sIEVE Mean value theorem
原文传递
Chen's Theorem with Small Primes
6
作者 Yingjie LI Yingchun CAI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2011年第3期387-396,共10页
Let N be a sufficiently large even integer.Let p denote a prime and P2 denote an almost prime with at most two prime factors.In this paper,it is proved that the equation N = p + P2(p ≤ N0.945) is solvable.
关键词 chens theorem sieve method Mean value theorem
原文传递
Chen’s theorem in short intervals
7
《Chinese Science Bulletin》 SCIE CAS 1998年第16期1401-1403,共3页
关键词 chen s theorem in short intervals
原文传递
莫比乌斯变换及其物理应用
8
作者 李维楠 《计算物理》 CSCD 北大核心 1998年第3期77-82,共6页
北京科技大学陈难先教授把数论中的一条古老定理:莫比乌斯变换推广到普通函数并创造性地用之于物理学中许多反问题,取得了巨大成功。在此以更直观和易于理解的方式导出陈氏定理,并通过一些具体实例展示其应用前景。
关键词 莫比乌斯变换 陈氏定理 反问题
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部