Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in t...Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in the coupled four-dimensional hyperchaotic Chen system with unknown parameters. The Routh Hurwitz theorem is used to derive the conditions of stability of this system. Furthermore based on Lyapunov stability theory, the control laws and adaptive laws of parameters are obtained to make generalized synchronization of the coupled new four-dimensional hyperchaotic Chen systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
This paper investigates the control and synchronization of hyperchaotic Chen system based on the passive theory. By using two outputs, novel passive controllers are respectively designed to realize the globally asympt...This paper investigates the control and synchronization of hyperchaotic Chen system based on the passive theory. By using two outputs, novel passive controllers are respectively designed to realize the globally asymptotical stability of the hyperchaotic Chen system and the error dynamical system, which avoids mistakes in Ref.[11], where function W(z) cannot guarantee that fo(z) is globally asymptotically stable via only one output and W(z) is the Lyapunov function of f0(z). Furthermore, numerical simulations are given to show the effectiveness of our method.展开更多
This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the ...This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.展开更多
The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. B...The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. By utilizing an adaptive controller based on the dynamic compensation mechanism, exact knowledge of the systems is not necessarily required, and the synchronous speed is controllable by tuning the controller parameters. Sufficient conditions for the asymptotic stability of the two synchronization schemes are derived. Numerical simulation results demonstrate that the adaptive synchronization scheme with four control inputs and the cascade adaptive synchronization scheme with only one control signal are effective and feasible in chaos synchronization of hyperchaotic systems.展开更多
A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of...A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.展开更多
In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two i...In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two identical hyperchaotic systems by directing the scaling factor onto the desired value. With symbolic computation system Maple and Lyapunov stability theory, numerical simulations are given to perform the process of the synchronization.展开更多
A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability ...A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.展开更多
文摘Based on the Chen chaotic system, a new four-dimensional hyperchaotic Chen system is constructed, and the basic dynamic behaviours of the system were studied, and the generalized synchronization has been observed in the coupled four-dimensional hyperchaotic Chen system with unknown parameters. The Routh Hurwitz theorem is used to derive the conditions of stability of this system. Furthermore based on Lyapunov stability theory, the control laws and adaptive laws of parameters are obtained to make generalized synchronization of the coupled new four-dimensional hyperchaotic Chen systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60574045 and 70771084)
文摘This paper investigates the control and synchronization of hyperchaotic Chen system based on the passive theory. By using two outputs, novel passive controllers are respectively designed to realize the globally asymptotical stability of the hyperchaotic Chen system and the error dynamical system, which avoids mistakes in Ref.[11], where function W(z) cannot guarantee that fo(z) is globally asymptotically stable via only one output and W(z) is the Lyapunov function of f0(z). Furthermore, numerical simulations are given to show the effectiveness of our method.
基金Project supported by the National Natural Science Foundation of China (Grant No 90405011), the Natural Science Foundation of Jiangsu Province, China (Grant No 05KJD120083) and the Natural Science Foundation of Nanjing Institute of Technology, China (Grant No KXJ06047).
文摘This paper presents chaos synchronization between two different four-dimensional (4D) hyperchaotic Chen systems by nonlinear feedback control laws. A modified 4D hyperchaotic Chen system is obtained by changing the nonlinear function of the 4D hyperchaotic Chen system, furthermore, an electronic circuit to realize two different 4D hyperchaotic Chen systems is designed. With nonlinear feedback control method, chaos synchronization between two different 4D hyperchaotic Chen systems is achieved. Based on the stability theory~ the functions of the nonlinear feedback control for synchronization of two different 4D hyperchaotic Chen systems is derived, the range of feedback gains is determined. Numerical simulations are shown to verify the theoretical results.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB210106)
文摘The synchronization of hyperchaotic Chen systems is considered. An adaptive synchronization approach and a cascade adaptive synchronization approach are presented to synchronize a drive system and a response system. By utilizing an adaptive controller based on the dynamic compensation mechanism, exact knowledge of the systems is not necessarily required, and the synchronous speed is controllable by tuning the controller parameters. Sufficient conditions for the asymptotic stability of the two synchronization schemes are derived. Numerical simulation results demonstrate that the adaptive synchronization scheme with four control inputs and the cascade adaptive synchronization scheme with only one control signal are effective and feasible in chaos synchronization of hyperchaotic systems.
基金*The project supported by the Natural Science Foundations of Zhejiang Province under Grant No. Y604056 and the Doctoral Foundation of Ningbo City under Grant No. 2005A61030
文摘A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.
文摘In this paper, a nonlinear control scheme of two identical hyperchaotic Chert systems is developed to realize their modified projective synchronization. We achieve modified projective synchronization between the two identical hyperchaotic systems by directing the scaling factor onto the desired value. With symbolic computation system Maple and Lyapunov stability theory, numerical simulations are given to perform the process of the synchronization.
基金Project supported by the National Natural Science Foundation of China (Grant No 20373021) and Natural Science Foundation of Liaoning Province (Grant No 20052151).
文摘A controller is designed to realize the synchronization between chaotic systems with different orders. The structure of the controller, the error equations and the Lyapunov functions are determined based on stability theory. Hyperchaotic Chen system and Rossler system are taken for example to demonstrate the method to be effective and feasible. Simulation results show that all the state wriables of Rossler system can be synchronized with those of hyperchaotic Chen system by using only one controller, and the error signals approach zero smoothly and quickly.