期刊文献+
共找到791篇文章
< 1 2 40 >
每页显示 20 50 100
Automatic Detection of COVID-19 Using Chest X-Ray Images and Modified ResNet18-Based Convolution Neural Networks 被引量:3
1
作者 Ruaa A.Al-Falluji Zainab Dalaf Katheeth Bashar Alathari 《Computers, Materials & Continua》 SCIE EI 2021年第2期1301-1313,共13页
The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)an... The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages.In this research,the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia,reported COVID-19 disease,and normal cases.The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures.Transfer Learning technique has been implemented in this work.Transfer learning is an ambitious task,but it results in impressive outcomes for identifying distinct patterns in tiny datasets of medical images.The findings indicate that deep learning with X-ray imagery could retrieve important biomarkers relevant for COVID-19 disease detection.Since all diagnostic measures show failure levels that pose questions,the scientific profession should determine the probability of integration of X-rays with the clinical treatment,utilizing the results.The proposed model achieved 96.73%accuracy outperforming the ResNet50 and traditional Resnet18 models.Based on our findings,the proposed system can help the specialist doctors in making verdicts for COVID-19 detection. 展开更多
关键词 COVID-19 artificial intelligence convolutional neural network chest x-ray images Resnet18 model
下载PDF
COVID-19 Detection from Chest X-Ray Images Using Convolutional Neural Network Approach
2
作者 Md. Harun Or Rashid Muzakkir Hossain Minhaz +2 位作者 Ananya Sarker Must. Asma Yasmin Md. Golam An Nihal 《Journal of Computer and Communications》 2023年第5期29-41,共13页
COVID-19 is a respiratory illness caused by the SARS-CoV-2 virus, first identified in 2019. The primary mode of transmission is through respiratory droplets when an infected person coughs or sneezes. Symptoms can rang... COVID-19 is a respiratory illness caused by the SARS-CoV-2 virus, first identified in 2019. The primary mode of transmission is through respiratory droplets when an infected person coughs or sneezes. Symptoms can range from mild to severe, and timely diagnosis is crucial for effective treatment. Chest X-Ray imaging is one diagnostic tool used for COVID-19, and a Convolutional Neural Network (CNN) is a popular technique for image classification. In this study, we proposed a CNN-based approach for detecting COVID-19 in chest X-Ray images. The model was trained on a dataset containing both COVID-19 positive and negative cases and evaluated on a separate test dataset to measure its accuracy. Our results indicated that the CNN approach could accurately detect COVID-19 in chest X-Ray images, with an overall accuracy of 97%. This approach could potentially serve as an early diagnostic tool to reduce the spread of the virus. 展开更多
关键词 COVID-19 chest x-ray images CNN VIRUS ACCURACY
下载PDF
Covid-19 Detection from Chest X-Ray Images Using Advanced Deep Learning Techniques 被引量:3
3
作者 Shubham Mahajan Akshay Raina +2 位作者 Mohamed Abouhawwash Xiao-Zhi Gao Amit Kant Pandit 《Computers, Materials & Continua》 SCIE EI 2022年第1期1541-1556,共16页
Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential ... Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential infection rate and mortality rate due to advancement inmedical aid and diagnostics.Data analytics,machine learning,and automation techniques can help in early diagnostics and supporting treatments of many reported patients.This paper proposes a robust and efficient methodology for the early detection of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning techniques.Our study suggests that using the Prediction and Deconvolutional Modules in combination with the SSD architecture can improve the performance of the model trained at this task.We used a publicly open CXR image dataset and implemented the detectionmodelwith task-specific pre-processing and near 80:20 split.This achieved a competitive specificity of 0.9474 and a sensibility/accuracy of 0.9597,which shall help better decision-making for various aspects of identification and treat the infection. 展开更多
关键词 Machine learning deep learning object detection chest x-ray medical images Covid-19
下载PDF
COVID-DeepNet: Hybrid Multimodal Deep Learning System for Improving COVID-19 Pneumonia Detection in Chest X-ray Images 被引量:3
4
作者 A.S.Al-Waisy Mazin Abed Mohammed +6 位作者 Shumoos Al-Fahdawi M.S.Maashi Begonya Garcia-Zapirain Karrar Hameed Abdulkareem S.A.Mostafa Nallapaneni Manoj Kumar Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第5期2409-2429,共21页
Coronavirus(COVID-19)epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide.This newly recognized virus is highly transmissible,and no clinically approved vaccine or antiviral medici... Coronavirus(COVID-19)epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide.This newly recognized virus is highly transmissible,and no clinically approved vaccine or antiviral medicine is currently available.Early diagnosis of infected patients through effective screening is needed to control the rapid spread of this virus.Chest radiography imaging is an effective diagnosis tool for COVID-19 virus and followup.Here,a novel hybrid multimodal deep learning system for identifying COVID-19 virus in chest X-ray(CX-R)images is developed and termed as the COVID-DeepNet system to aid expert radiologists in rapid and accurate image interpretation.First,Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Butterworth bandpass filter were applied to enhance the contrast and eliminate the noise in CX-R images,respectively.Results from two different deep learning approaches based on the incorporation of a deep belief network and a convolutional deep belief network trained from scratch using a large-scale dataset were then fused.Parallel architecture,which provides radiologists a high degree of confidence to distinguish healthy and COVID-19 infected people,was considered.The proposed COVID-DeepNet system can correctly and accurately diagnose patients with COVID-19 with a detection accuracy rate of 99.93%,sensitivity of 99.90%,specificity of 100%,precision of 100%,F1-score of 99.93%,MSE of 0.021%,and RMSE of 0.016%in a large-scale dataset.This system shows efficiency and accuracy and can be used in a real clinical center for the early diagnosis of COVID-19 virus and treatment follow-up with less than 3 s per image to make the final decision. 展开更多
关键词 Coronavirus epidemic deep learning deep belief network convolutional deep belief network chest radiography imaging
下载PDF
A Novel Method for Automated Lung Region Segmentation in Chest X-Ray Images
5
作者 Eri Matsuyama 《Journal of Biomedical Science and Engineering》 2021年第6期288-299,共12页
<span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) syst... <span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) systems for chest radiography. However, if the chest X-ray images themselves are used as training data for the AI-CAD system, the system might learn the irrelevant image-based information resulting in the decrease of system’s performance. In this study, we propose a lung region segmentation method that can automatically remove the shoulder and scapula regions, mediastinum, and diaphragm regions in advance from various chest X-ray images to be used as learning data. The proposed method consists of three main steps. First, employ the simple linear iterative clustering algorithm, the lazy snapping technique and local entropy filter to generate an entropy map. Second, apply morphological operations to the entropy map to obtain a lung mask. Third, perform automated segmentation of the lung field using the obtained mask. A total of 30 images were used for the experiments. In order to verify the effectiveness of the proposed method, two other texture maps, namely, the maps created from the standard deviation filtering and the range filtering, were used for comparison. As a result, the proposed method using the entropy map was able to appropriately remove the unnecessary regions. In addition, this method was able to remove the markers present in the image, but the other two methods could not. The experimental results have revealed that our proposed method is a highly generalizable and useful algorithm. We believe that this method might act an important role to enhance the performance of AI-CAD systems for chest X-ray images.</span> 展开更多
关键词 chest x-ray image Segmentation THRESHOLDING Simple Linear Iterative Clustering Lazy Snapping Entropy Filtering MASKING AI-CAD
下载PDF
Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN
6
作者 Anika Tahsin Meem Mohammad Monirujjaman Khan +1 位作者 Mehedi Masud Sultan Aljahdali 《Computer Systems Science & Engineering》 SCIE EI 2022年第6期1223-1240,共18页
The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-... The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-effective manner inorder to fight this disease. This paper presents the prediction of COVID-19 withChest X-Ray images, and the implementation of an image processing systemoperated using deep learning and neural networks. In this paper, a Deep Learning,Machine Learning, and Convolutional Neural Network-based approach for predicting Covid-19 positive and normal patients using Chest X-Ray pictures is proposed. In this study, machine learning tools such as TensorFlow were used forbuilding and training neural nets. Scikit-learn was used for machine learning fromend to end. Various deep learning features are used, such as Conv2D, Dense Net,Dropout, Maxpooling2D for creating the model. The proposed approach had aclassification accuracy of 96.43 percent and a validation accuracy of 98.33 percentafter training and testing the X-Ray pictures. Finally, a web application has beendeveloped for general users, which will detect chest x-ray images either as covidor normal. A GUI application for the Covid prediction framework was run. Achest X-ray image can be browsed and fed into the program by medical personnelor the general public. 展开更多
关键词 Covid-19 prediction covid-19 CORONAVIRUS NORMAL deep learning convolutional neural network image processing chest x-ray
下载PDF
Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
7
作者 JoséEscorcia-Gutierrez Margarita Gamarra +3 位作者 Roosvel Soto-Diaz Safa Alsafari Ayman Yafoz Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2023年第6期5255-5270,共16页
A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imagin... A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imaging time,widespread availability,low cost,and portability.In radiological investigations,computer-aided diagnostic tools are implemented to reduce intra-and inter-observer variability.Using lately industrialized Artificial Intelligence(AI)algorithms and radiological techniques to diagnose and classify disease is advantageous.The current study develops an automatic identification and classification model for CXR pictures using Gaussian Fil-tering based Optimized Synergic Deep Learning using Remora Optimization Algorithm(GF-OSDL-ROA).This method is inclusive of preprocessing and classification based on optimization.The data is preprocessed using Gaussian filtering(GF)to remove any extraneous noise from the image’s edges.Then,the OSDL model is applied to classify the CXRs under different severity levels based on CXR data.The learning rate of OSDL is optimized with the help of ROA for COVID-19 diagnosis showing the novelty of the work.OSDL model,applied in this study,was validated using the COVID-19 dataset.The experiments were conducted upon the proposed OSDL model,which achieved a classification accuracy of 99.83%,while the current Convolutional Neural Network achieved less classification accuracy,i.e.,98.14%. 展开更多
关键词 Artificial intelligence chest x-ray COVID-19 optimized synergic deep learning PREPROCESSING public health
下载PDF
Pulmonary Edema and Pleural Effusion Detection Using Efficient Net-V1-B4 Architecture and AdamW Optimizer from Chest X-Rays Images
8
作者 Anas AbuKaraki Tawfi Alrawashdeh +4 位作者 Sumaya Abusaleh Malek Zakarya Alksasbeh Bilal Alqudah Khalid Alemerien Hamzah Alshamaseen 《Computers, Materials & Continua》 SCIE EI 2024年第7期1055-1073,共19页
This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was f... This paper presents a novelmulticlass systemdesigned to detect pleural effusion and pulmonary edema on chest Xray images,addressing the critical need for early detection in healthcare.A new comprehensive dataset was formed by combining 28,309 samples from the ChestX-ray14,PadChest,and CheXpert databases,with 10,287,6022,and 12,000 samples representing Pleural Effusion,Pulmonary Edema,and Normal cases,respectively.Consequently,the preprocessing step involves applying the Contrast Limited Adaptive Histogram Equalization(CLAHE)method to boost the local contrast of the X-ray samples,then resizing the images to 380×380 dimensions,followed by using the data augmentation technique.The classification task employs a deep learning model based on the EfficientNet-V1-B4 architecture and is trained using the AdamW optimizer.The proposed multiclass system achieved an accuracy(ACC)of 98.3%,recall of 98.3%,precision of 98.7%,and F1-score of 98.7%.Moreover,the robustness of the model was revealed by the Receiver Operating Characteristic(ROC)analysis,which demonstrated an Area Under the Curve(AUC)of 1.00 for edema and normal cases and 0.99 for effusion.The experimental results demonstrate the superiority of the proposedmulti-class system,which has the potential to assist clinicians in timely and accurate diagnosis,leading to improved patient outcomes.Notably,ablation-CAM visualization at the last convolutional layer portrayed further enhanced diagnostic capabilities with heat maps on X-ray images,which will aid clinicians in interpreting and localizing abnormalities more effectively. 展开更多
关键词 image classification decision support system EfficientNet-V1-B4 AdamW optimizer pulmonary edema pleural effusion chest x-rays
下载PDF
Deep learning models for tuberculosis detection and infected region visualization in chest X-ray images
9
作者 Vinayak Sharma Nillmani +1 位作者 Sachin Kumar Gupta Kaushal Kumar Shukla 《Intelligent Medicine》 EI CSCD 2024年第2期104-113,共10页
Objective Tuberculosis(TB)is among the most frequent causes of infectious-disease-related mortality.Despite being treatable by antibiotics,tuberculosis often goes misdiagnosed and untreated,especially in rural and low... Objective Tuberculosis(TB)is among the most frequent causes of infectious-disease-related mortality.Despite being treatable by antibiotics,tuberculosis often goes misdiagnosed and untreated,especially in rural and low-resource areas.Chest X-rays are frequently used to aid diagnosis;however,this presents additional challenges because of the possibility of abnormal radiological appearance and a lack of radiologists in areas where the infection is most prevalent.Implementing deep-learning-based imaging techniques for computer-aided diagnosis has the potential to enable accurate diagnoses and lessen the burden on medical specialists.In the present work,we aimed to develop deep-learning-based segmentation and classification models for accurate and precise detection of tuberculosis in chest X-ray images,with visualization of infection using gradient-weighted class activation mapping(Grad-CAM)heatmaps.Methods First,we trained the UNet segmentation model using 704 chest X-ray radiographs taken from the Montgomery County and Shenzhen Hospital datasets.Next,we implemented the trained UNet model on 1,400 tuberculosis and control chest X-ray scans to segment the lung region.The images were taken from the National Institute of Allergy and Infectious Diseases(NIAID)TB portal program dataset.Then,we applied the deep learning Xception model to classify the segmented lung region into tuberculosis and normal classes.We further investigated the visualization capabilities of the model using Grad-CAM to view tuberculosis abnormalities in chest X-rays and discuss them from radiological perspectives.Results For segmentation by the UNet model,we achieved accuracy,Jaccard index,Dice coefficient,and area under the curve(AUC)values of 96.35%,90.38%,94.88%,and 0.99,respectively.For classification by the Xception model,we achieved classification accuracy,precision,recall,F1-score,and AUC values of 99.29%,99.30%,99.29%,99.29%,and 0.999,respectively.The Grad-CAM heatmap images from the tuberculosis class showed similar heatmap patterns,where lesions were primarily present in the upper part of the lungs.Conclusion The findings may verify our system's efficacy and superiority to clinician precision in tuberculosis diagnosis using chest X-rays and raise the possibility of a valuable setup,particularly in environments with a scarcity of radiological expertise. 展开更多
关键词 TUBERCULOSIS Artificial intelligence Deep learning SEGMENTATION Classification chest x-ray
原文传递
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:2
10
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li TianRan Sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft x-ray imager MAGNETOPAUSE image restoration
下载PDF
Automated Algorithms for Detecting and Classifying X-Ray Images of Spine Fractures
11
作者 Fayez Alfayez 《Computers, Materials & Continua》 SCIE EI 2024年第4期1539-1560,共22页
This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include pictu... This paper emphasizes a faster digital processing time while presenting an accurate method for identifying spinefractures in X-ray pictures. The study focuses on efficiency by utilizing many methods that include picturesegmentation, feature reduction, and image classification. Two important elements are investigated to reducethe classification time: Using feature reduction software and leveraging the capabilities of sophisticated digitalprocessing hardware. The researchers use different algorithms for picture enhancement, including theWiener andKalman filters, and they look into two background correction techniques. The article presents a technique forextracting textural features and evaluates three picture segmentation algorithms and three fractured spine detectionalgorithms using transformdomain, PowerDensity Spectrum(PDS), andHigher-Order Statistics (HOS) for featureextraction.With an emphasis on reducing digital processing time, this all-encompassing method helps to create asimplified system for classifying fractured spine fractures. A feature reduction program code has been built toimprove the processing speed for picture classification. Overall, the proposed approach shows great potential forsignificantly reducing classification time in clinical settings where time is critical. In comparison to other transformdomains, the texture features’ discrete cosine transform (DCT) yielded an exceptional classification rate, and theprocess of extracting features from the transform domain took less time. More capable hardware can also result inquicker execution times for the feature extraction algorithms. 展开更多
关键词 Feature reduction image classification x-ray images
下载PDF
Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images
12
作者 Shaik Mahaboob Basha Victor Hugo Cde Albuquerque +3 位作者 Samia Allaoua Chelloug Mohamed Abd Elaziz Shaik Hashmitha Mohisin Suhail Parvaze Pathan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1981-2004,共24页
Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image a... Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented. 展开更多
关键词 chest radiography(CXR)image COVID-19 CLASSIFIER machine learning random forest texture analysis
下载PDF
Pulmonary tuberculosis detection model of chest X-ray images using convolutional neural network 被引量:1
13
作者 He Jin Wang Cong Chen Zhao 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2018年第6期1-6,共6页
The primary screening for pulmonary tuberculosis mainly relies on X-ray imaging all over the world. In recent years, the incidence of pulmonary tuberculosis has rebounded. This paper proposes a convolutional neural ne... The primary screening for pulmonary tuberculosis mainly relies on X-ray imaging all over the world. In recent years, the incidence of pulmonary tuberculosis has rebounded. This paper proposes a convolutional neural networks(CNN) based model on the tuberculosis detection of chest X-ray images, which is used for the automatic screening of pulmonary tuberculosis. Compared with the conventional CNN, this model can be used to detect the details of images and the areas of the disease quickly and accurately. There is an improvement in the learning speed and accuracy rate of our method, so it can better complete the work of anomaly detection and it can provide more effective auxiliary decision information for the practitioners. 展开更多
关键词 x-ray images pulmonary tuberculosis CNN automatic screening
原文传递
Diagnosis of COVID-19 from Chest X-Ray Images Using Wavelets-Based Depthwise Convolution Network 被引量:2
14
作者 Krishna Kant Singh Akansha Singh 《Big Data Mining and Analytics》 EI 2021年第2期84-93,共10页
Coronavirus disease 2019 also known as COVID-19 has become a pandemic. The disease is caused by a beta coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2(SARS-Co V-2). The severity of the disease can b... Coronavirus disease 2019 also known as COVID-19 has become a pandemic. The disease is caused by a beta coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2(SARS-Co V-2). The severity of the disease can be understood by the massive number of deaths and affected patients globally. If the diagnosis is fast-paced, the disease can be controlled in a better manner. Laboratory tests are available for diagnosis, but they are bounded by available testing kits and time. The use of radiological examinations that comprise Computed Tomography(CT) can be used for the diagnosis of the disease. Specifically, chest X-Ray images can be analysed to identify the presence of COVID-19 in a patient. In this paper, an automated method for the diagnosis of COVID-19 from the chest X-Ray images is proposed. The method presents an improved depthwise convolution neural network for analysing the chest X-Ray images. Wavelet decomposition is applied to integrate multiresolution analysis in the network. The frequency sub-bands obtained from the input images are fed in the network for identifying the disease.The network is designed to predict the class of the input image as normal, viral pneumonia, and COVID-19. The predicted output from the model is combined with Grad-CAM visualization for diagnosis. A comparative study with the existing methods is also performed. The metrics like accuracy, sensitivity, and F1-measure are calculated for performance evaluation. The performance of the proposed method is better than the existing methodologies and thus can be used for the effective diagnosis of the disease. 展开更多
关键词 CORONAVIRUS COVID-19 deep learning convolution neural network x-ray images
原文传递
The Soft X-ray Imager(SXI)on the SMILE Mission 被引量:4
15
作者 S.Sembay A.L.Alme +83 位作者 D.Agnolon T.Arnold A.Beardmore A.Belén Balado Margeli C.Bicknell C.Bouldin G.Branduardi-Raymont T.Crawford J.P.Breuer T.Buggey G.Butcher R.Canchal J.A.Carter A.Cheney Y.Collado-Vega H.Connor T.Crawford N.Eaton C.Feldman C.Forsyth T.Frantzen G.Galgóczi J.Garcia G.Y.Genov C.Gordillo H-P.Gröbelbauer M.Guedel Y.Guo M.Hailey D.Hall R.Hampson J.Hasiba O.Hetherington A.Holland S-Y.Hsieh M.W.J.Hubbard H.Jeszenszky M.Jones T.Kennedy K.Koch-Mehrin S.Kögl S.Krucker K.D.Kuntz C.Lakin G.Laky O.Lylund A.Martindale J.Miguel Mas Hesse R.Nakamura K.Oksavik N.Østgaard H.Ottacher R.Ottensamer C.Pagani S.Parsons P.Patel J.Pearson G.Peikert F.S.Porter T.Pouliantis B.H.Qureshi W.Raab G.Randal A.M.Read N.M.M.Roque M.E.Rostad C.Runciman S.Sachdev A.Samsonov M.Soman D.Sibeck S.Smit J.Søndergaard R.Speight S.Stavland M.Steller TianRan Sun J.Thornhill W.Thomas K.Ullaland B.Walsh D.Walton C.Wang S.Yang 《Earth and Planetary Physics》 EI CSCD 2024年第1期5-14,共10页
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese... The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States. 展开更多
关键词 Soft x-ray imaging micropore optics large area CCD
下载PDF
Two-Dimensional Perovskite Single Crystals for High-Performance X-ray Imaging and Exploring MeV X-ray Detection 被引量:1
16
作者 Xieming Xu Yiheng Wu +5 位作者 Yi Zhang Xiaohui Li Fang Wang Xiaoming Jiang Shaofan Wu Shuaihua Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期139-146,共8页
Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,bu... Scintillation semiconductors play increasingly important medical diagnosis and industrial inspection roles.Recently,two-dimensional(2D)perovskites have been shown to be promising materials for medical X-ray imaging,but they are mostly used in low-energy(≤130 keV)regions.Direct detection of MeV X-rays,which ensure thorough penetration of the thick shell walls of containers,trucks,and aircraft,is also highly desired in practical industrial applications.Unfortunately,scintillation semiconductors for high-energy X-ray detection are currently scarce.Here,This paper reports a 2D(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single crystal with outstanding sensitivity and stability toward X-ray radiation that provides an ultra-wide detectable X-ray range of between 8.20 nGy_(air)s^(-1)(50 keV)and 15.24 mGy_(air)s^(-1)(9 MeV).The(C_(4)H_(9)NH_(3))_(2)PbBr_(4)single-crystal detector with a vertical structure is used for high-performance X-ray imaging,delivering a good spatial resolution of 4.3 Ip mm^(-1)in a plane-scan imaging system.Low ionic migration in the 2D perovskite enables the vertical device to be operated with hundreds of keV to MeV X-ray radiation at high bias voltages,leading to a sensitivity of 46.90μC Gy_(air)-1 cm^(-2)(-1.16 Vμm^(-1))with 9 MeV X-ray radiation,demonstrating that 2D perovskites have enormous potential for high-energy industrial applications. 展开更多
关键词 MeV x-ray detection single-crystal x-ray detectors two-dimensional perovskites x-ray imaging
下载PDF
SMILE soft X-ray Imager flight model CCD370 pre-flight device characterisation 被引量:1
17
作者 S.Parsons D.J.Hall +4 位作者 O.Hetherington T.W.Buggey T.Arnold M.W.J.Hubbard A.Holland 《Earth and Planetary Physics》 EI CSCD 2024年第1期25-38,共14页
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof... Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented. 展开更多
关键词 CCD soft x-ray imager characterisation SMILE
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
18
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft x-ray imager
下载PDF
An attention-based cascade R-CNN model for sternum fracture detection in X-ray images 被引量:4
19
作者 Yang Jia Haijuan Wang +2 位作者 Weiguang Chen Yagang Wang Bin Yang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期658-670,共13页
Fracture is one of the most common and unexpected traumas.If not treated in time,it may cause serious consequences such as joint stiffness,traumatic arthritis,and nerve injury.Using computer vision technology to detec... Fracture is one of the most common and unexpected traumas.If not treated in time,it may cause serious consequences such as joint stiffness,traumatic arthritis,and nerve injury.Using computer vision technology to detect fractures can reduce the workload and misdiagnosis of fractures and also improve the fracture detection speed.However,there are still some problems in sternum fracture detection,such as the low detection rate of small and occult fractures.In this work,the authors have constructed a dataset with 1227 labelled X-ray images for sternum fracture detection.The authors designed a fully automatic fracture detection model based on a deep convolution neural network(CNN).The authors used cascade R-CNN,attention mechanism,and atrous convolution to optimise the detection of small fractures in a large X-ray image with big local variations.The authors compared the detection results of YOLOv5 model,cascade R-CNN and other state-of-the-art models.The authors found that the convolution neural network based on cascade and attention mechanism models has a better detection effect and arrives at an mAP of 0.71,which is much better than using the YOLOv5 model(mAP=0.44)and cascade R-CNN(mAP=0.55). 展开更多
关键词 attention mechanism cascade R-CNN fracture detection x-ray image
下载PDF
A Comprehensive Investigation of Machine Learning Feature Extraction and ClassificationMethods for Automated Diagnosis of COVID-19 Based on X-ray Images 被引量:7
20
作者 Mazin Abed Mohammed Karrar Hameed Abdulkareem +6 位作者 Begonya Garcia-Zapirain Salama A.Mostafa Mashael S.Maashi Alaa S.Al-Waisy Mohammed Ahmed Subhi Ammar Awad Mutlag Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第3期3289-3310,共22页
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi... The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019. 展开更多
关键词 Coronavirus disease COVID-19 diagnosis machine learning convolutional neural networks resnet50 artificial neural network support vector machine x-ray images feature transfer learning
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部