期刊文献+
共找到697篇文章
< 1 2 35 >
每页显示 20 50 100
COVID-19 Detection from Chest X-Ray Images Using Convolutional Neural Network Approach
1
作者 Md. Harun Or Rashid Muzakkir Hossain Minhaz +2 位作者 Ananya Sarker Must. Asma Yasmin Md. Golam An Nihal 《Journal of Computer and Communications》 2023年第5期29-41,共13页
COVID-19 is a respiratory illness caused by the SARS-CoV-2 virus, first identified in 2019. The primary mode of transmission is through respiratory droplets when an infected person coughs or sneezes. Symptoms can rang... COVID-19 is a respiratory illness caused by the SARS-CoV-2 virus, first identified in 2019. The primary mode of transmission is through respiratory droplets when an infected person coughs or sneezes. Symptoms can range from mild to severe, and timely diagnosis is crucial for effective treatment. Chest X-Ray imaging is one diagnostic tool used for COVID-19, and a Convolutional Neural Network (CNN) is a popular technique for image classification. In this study, we proposed a CNN-based approach for detecting COVID-19 in chest X-Ray images. The model was trained on a dataset containing both COVID-19 positive and negative cases and evaluated on a separate test dataset to measure its accuracy. Our results indicated that the CNN approach could accurately detect COVID-19 in chest X-Ray images, with an overall accuracy of 97%. This approach could potentially serve as an early diagnostic tool to reduce the spread of the virus. 展开更多
关键词 COVID-19 chest x-ray images CNN VIRUS ACCURACY
下载PDF
Optimal Synergic Deep Learning for COVID-19 Classification Using Chest X-Ray Images
2
作者 JoséEscorcia-Gutierrez Margarita Gamarra +3 位作者 Roosvel Soto-Diaz Safa Alsafari Ayman Yafoz Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2023年第6期5255-5270,共16页
A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imagin... A chest radiology scan can significantly aid the early diagnosis and management of COVID-19 since the virus attacks the lungs.Chest X-ray(CXR)gained much interest after the COVID-19 outbreak thanks to its rapid imaging time,widespread availability,low cost,and portability.In radiological investigations,computer-aided diagnostic tools are implemented to reduce intra-and inter-observer variability.Using lately industrialized Artificial Intelligence(AI)algorithms and radiological techniques to diagnose and classify disease is advantageous.The current study develops an automatic identification and classification model for CXR pictures using Gaussian Fil-tering based Optimized Synergic Deep Learning using Remora Optimization Algorithm(GF-OSDL-ROA).This method is inclusive of preprocessing and classification based on optimization.The data is preprocessed using Gaussian filtering(GF)to remove any extraneous noise from the image’s edges.Then,the OSDL model is applied to classify the CXRs under different severity levels based on CXR data.The learning rate of OSDL is optimized with the help of ROA for COVID-19 diagnosis showing the novelty of the work.OSDL model,applied in this study,was validated using the COVID-19 dataset.The experiments were conducted upon the proposed OSDL model,which achieved a classification accuracy of 99.83%,while the current Convolutional Neural Network achieved less classification accuracy,i.e.,98.14%. 展开更多
关键词 Artificial intelligence chest x-ray COVID-19 optimized synergic deep learning PREPROCESSING public health
下载PDF
Automatic Detection of COVID-19 Using Chest X-Ray Images and Modified ResNet18-Based Convolution Neural Networks 被引量:1
3
作者 Ruaa A.Al-Falluji Zainab Dalaf Katheeth Bashar Alathari 《Computers, Materials & Continua》 SCIE EI 2021年第2期1301-1313,共13页
The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)an... The latest studies with radiological imaging techniques indicate that X-ray images provide valuable details on the Coronavirus disease 2019(COVID-19).The usage of sophisticated artificial intelligence technology(AI)and the radiological images can help in diagnosing the disease reliably and addressing the problem of the shortage of trained doctors in remote villages.In this research,the automated diagnosis of Coronavirus disease was performed using a dataset of X-ray images of patients with severe bacterial pneumonia,reported COVID-19 disease,and normal cases.The goal of the study is to analyze the achievements for medical image recognition of state-of-the-art neural networking architectures.Transfer Learning technique has been implemented in this work.Transfer learning is an ambitious task,but it results in impressive outcomes for identifying distinct patterns in tiny datasets of medical images.The findings indicate that deep learning with X-ray imagery could retrieve important biomarkers relevant for COVID-19 disease detection.Since all diagnostic measures show failure levels that pose questions,the scientific profession should determine the probability of integration of X-rays with the clinical treatment,utilizing the results.The proposed model achieved 96.73%accuracy outperforming the ResNet50 and traditional Resnet18 models.Based on our findings,the proposed system can help the specialist doctors in making verdicts for COVID-19 detection. 展开更多
关键词 COVID-19 artificial intelligence convolutional neural network chest x-ray images Resnet18 model
下载PDF
Covid-19 Detection from Chest X-Ray Images Using Advanced Deep Learning Techniques 被引量:1
4
作者 Shubham Mahajan Akshay Raina +2 位作者 Mohamed Abouhawwash Xiao-Zhi Gao Amit Kant Pandit 《Computers, Materials & Continua》 SCIE EI 2022年第1期1541-1556,共16页
Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential ... Like the Covid-19 pandemic,smallpox virus infection broke out in the last century,wherein 500 million deaths were reported along with enormous economic loss.But unlike smallpox,the Covid-19 recorded a low exponential infection rate and mortality rate due to advancement inmedical aid and diagnostics.Data analytics,machine learning,and automation techniques can help in early diagnostics and supporting treatments of many reported patients.This paper proposes a robust and efficient methodology for the early detection of COVID-19 from Chest X-Ray scans utilizing enhanced deep learning techniques.Our study suggests that using the Prediction and Deconvolutional Modules in combination with the SSD architecture can improve the performance of the model trained at this task.We used a publicly open CXR image dataset and implemented the detectionmodelwith task-specific pre-processing and near 80:20 split.This achieved a competitive specificity of 0.9474 and a sensibility/accuracy of 0.9597,which shall help better decision-making for various aspects of identification and treat the infection. 展开更多
关键词 Machine learning deep learning object detection chest x-ray medical images Covid-19
下载PDF
A Novel Method for Automated Lung Region Segmentation in Chest X-Ray Images
5
作者 Eri Matsuyama 《Journal of Biomedical Science and Engineering》 2021年第6期288-299,共12页
<span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) syst... <span style="font-family:Verdana;">Detecting and segmenting the lung regions in chest X-ray images is an important part in artificial intelligence-based computer-aided diagnosis/detection (AI-CAD) systems for chest radiography. However, if the chest X-ray images themselves are used as training data for the AI-CAD system, the system might learn the irrelevant image-based information resulting in the decrease of system’s performance. In this study, we propose a lung region segmentation method that can automatically remove the shoulder and scapula regions, mediastinum, and diaphragm regions in advance from various chest X-ray images to be used as learning data. The proposed method consists of three main steps. First, employ the simple linear iterative clustering algorithm, the lazy snapping technique and local entropy filter to generate an entropy map. Second, apply morphological operations to the entropy map to obtain a lung mask. Third, perform automated segmentation of the lung field using the obtained mask. A total of 30 images were used for the experiments. In order to verify the effectiveness of the proposed method, two other texture maps, namely, the maps created from the standard deviation filtering and the range filtering, were used for comparison. As a result, the proposed method using the entropy map was able to appropriately remove the unnecessary regions. In addition, this method was able to remove the markers present in the image, but the other two methods could not. The experimental results have revealed that our proposed method is a highly generalizable and useful algorithm. We believe that this method might act an important role to enhance the performance of AI-CAD systems for chest X-ray images.</span> 展开更多
关键词 chest x-ray image Segmentation THRESHOLDING Simple Linear Iterative Clustering Lazy Snapping Entropy Filtering MASKING AI-CAD
下载PDF
Prediction of Covid-19 Based on Chest X-Ray Images Using Deep Learning with CNN
6
作者 Anika Tahsin Meem Mohammad Monirujjaman Khan +1 位作者 Mehedi Masud Sultan Aljahdali 《Computer Systems Science & Engineering》 SCIE EI 2022年第6期1223-1240,共18页
The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-... The COVID-19 pandemic has caused trouble in people’s daily lives andruined several economies around the world, killing millions of people thus far. Itis essential to screen the affected patients in a timely and cost-effective manner inorder to fight this disease. This paper presents the prediction of COVID-19 withChest X-Ray images, and the implementation of an image processing systemoperated using deep learning and neural networks. In this paper, a Deep Learning,Machine Learning, and Convolutional Neural Network-based approach for predicting Covid-19 positive and normal patients using Chest X-Ray pictures is proposed. In this study, machine learning tools such as TensorFlow were used forbuilding and training neural nets. Scikit-learn was used for machine learning fromend to end. Various deep learning features are used, such as Conv2D, Dense Net,Dropout, Maxpooling2D for creating the model. The proposed approach had aclassification accuracy of 96.43 percent and a validation accuracy of 98.33 percentafter training and testing the X-Ray pictures. Finally, a web application has beendeveloped for general users, which will detect chest x-ray images either as covidor normal. A GUI application for the Covid prediction framework was run. Achest X-ray image can be browsed and fed into the program by medical personnelor the general public. 展开更多
关键词 Covid-19 prediction covid-19 CORONAVIRUS NORMAL deep learning convolutional neural network image processing chest x-ray
下载PDF
COVID-DeepNet: Hybrid Multimodal Deep Learning System for Improving COVID-19 Pneumonia Detection in Chest X-ray Images
7
作者 A.S.Al-Waisy Mazin Abed Mohammed +6 位作者 Shumoos Al-Fahdawi M.S.Maashi Begonya Garcia-Zapirain Karrar Hameed Abdulkareem S.A.Mostafa Nallapaneni Manoj Kumar Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第5期2409-2429,共21页
Coronavirus(COVID-19)epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide.This newly recognized virus is highly transmissible,and no clinically approved vaccine or antiviral medici... Coronavirus(COVID-19)epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide.This newly recognized virus is highly transmissible,and no clinically approved vaccine or antiviral medicine is currently available.Early diagnosis of infected patients through effective screening is needed to control the rapid spread of this virus.Chest radiography imaging is an effective diagnosis tool for COVID-19 virus and followup.Here,a novel hybrid multimodal deep learning system for identifying COVID-19 virus in chest X-ray(CX-R)images is developed and termed as the COVID-DeepNet system to aid expert radiologists in rapid and accurate image interpretation.First,Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Butterworth bandpass filter were applied to enhance the contrast and eliminate the noise in CX-R images,respectively.Results from two different deep learning approaches based on the incorporation of a deep belief network and a convolutional deep belief network trained from scratch using a large-scale dataset were then fused.Parallel architecture,which provides radiologists a high degree of confidence to distinguish healthy and COVID-19 infected people,was considered.The proposed COVID-DeepNet system can correctly and accurately diagnose patients with COVID-19 with a detection accuracy rate of 99.93%,sensitivity of 99.90%,specificity of 100%,precision of 100%,F1-score of 99.93%,MSE of 0.021%,and RMSE of 0.016%in a large-scale dataset.This system shows efficiency and accuracy and can be used in a real clinical center for the early diagnosis of COVID-19 virus and treatment follow-up with less than 3 s per image to make the final decision. 展开更多
关键词 Coronavirus epidemic deep learning deep belief network convolutional deep belief network chest radiography imaging
下载PDF
Using restored two-dimensional X-ray images to reconstruct the three-dimensional magnetopause 被引量:1
8
作者 RongCong Wang JiaQi Wang +3 位作者 DaLin Li TianRan Sun XiaoDong Peng YiHong Guo 《Earth and Planetary Physics》 EI CSCD 2024年第1期133-154,共22页
Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosph... Astronomical imaging technologies are basic tools for the exploration of the universe,providing basic data for the research of astronomy and space physics.The Soft X-ray Imager(SXI)carried by the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)aims to capture two-dimensional(2-D)images of the Earth’s magnetosheath by using soft X-ray imaging.However,the observed 2-D images are affected by many noise factors,destroying the contained information,which is not conducive to the subsequent reconstruction of the three-dimensional(3-D)structure of the magnetopause.The analysis of SXI-simulated observation images shows that such damage cannot be evaluated with traditional restoration models.This makes it difficult to establish the mapping relationship between SXIsimulated observation images and target images by using mathematical models.We propose an image restoration algorithm for SXIsimulated observation images that can recover large-scale structure information on the magnetosphere.The idea is to train a patch estimator by selecting noise–clean patch pairs with the same distribution through the Classification–Expectation Maximization algorithm to achieve the restoration estimation of the SXI-simulated observation image,whose mapping relationship with the target image is established by the patch estimator.The Classification–Expectation Maximization algorithm is used to select multiple patch clusters with the same distribution and then train different patch estimators so as to improve the accuracy of the estimator.Experimental results showed that our image restoration algorithm is superior to other classical image restoration algorithms in the SXI-simulated observation image restoration task,according to the peak signal-to-noise ratio and structural similarity.The restoration results of SXI-simulated observation images are used in the tangent fitting approach and the computed tomography approach toward magnetospheric reconstruction techniques,significantly improving the reconstruction results.Hence,the proposed technology may be feasible for processing SXI-simulated observation images. 展开更多
关键词 Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) soft x-ray imager MAGNETOPAUSE image restoration
下载PDF
Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images
9
作者 Shaik Mahaboob Basha Victor Hugo Cde Albuquerque +3 位作者 Samia Allaoua Chelloug Mohamed Abd Elaziz Shaik Hashmitha Mohisin Suhail Parvaze Pathan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1981-2004,共24页
Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image a... Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented. 展开更多
关键词 chest radiography(CXR)image COVID-19 CLASSIFIER machine learning random forest texture analysis
下载PDF
The Soft X-ray Imager(SXI)on the SMILE Mission 被引量:4
10
作者 S.Sembay A.L.Alme +83 位作者 D.Agnolon T.Arnold A.Beardmore A.Belén Balado Margeli C.Bicknell C.Bouldin G.Branduardi-Raymont T.Crawford J.P.Breuer T.Buggey G.Butcher R.Canchal J.A.Carter A.Cheney Y.Collado-Vega H.Connor T.Crawford N.Eaton C.Feldman C.Forsyth T.Frantzen G.Galgóczi J.Garcia G.Y.Genov C.Gordillo H-P.Gröbelbauer M.Guedel Y.Guo M.Hailey D.Hall R.Hampson J.Hasiba O.Hetherington A.Holland S-Y.Hsieh M.W.J.Hubbard H.Jeszenszky M.Jones T.Kennedy K.Koch-Mehrin S.Kögl S.Krucker K.D.Kuntz C.Lakin G.Laky O.Lylund A.Martindale J.Miguel Mas Hesse R.Nakamura K.Oksavik N.Østgaard H.Ottacher R.Ottensamer C.Pagani S.Parsons P.Patel J.Pearson G.Peikert F.S.Porter T.Pouliantis B.H.Qureshi W.Raab G.Randal A.M.Read N.M.M.Roque M.E.Rostad C.Runciman S.Sachdev A.Samsonov M.Soman D.Sibeck S.Smit J.Søndergaard R.Speight S.Stavland M.Steller TianRan Sun J.Thornhill W.Thomas K.Ullaland B.Walsh D.Walton C.Wang S.Yang 《Earth and Planetary Physics》 EI CSCD 2024年第1期5-14,共10页
The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese... The Soft X-ray Imager(SXI)is part of the scientific payload of the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.SMILE is a joint science mission between the European Space Agency(ESA)and the Chinese Academy of Sciences(CAS)and is due for launch in 2025.SXI is a compact X-ray telescope with a wide field-of-view(FOV)capable of encompassing large portions of Earth’s magnetosphere from the vantage point of the SMILE orbit.SXI is sensitive to the soft X-rays produced by the Solar Wind Charge eXchange(SWCX)process produced when heavy ions of solar wind origin interact with neutral particles in Earth’s exosphere.SWCX provides a mechanism for boundary detection within the magnetosphere,such as the position of Earth’s magnetopause,because the solar wind heavy ions have a very low density in regions of closed magnetic field lines.The sensitivity of the SXI is such that it can potentially track movements of the magnetopause on timescales of a few minutes and the orbit of SMILE will enable such movements to be tracked for segments lasting many hours.SXI is led by the University of Leicester in the United Kingdom(UK)with collaborating organisations on hardware,software and science support within the UK,Europe,China and the United States. 展开更多
关键词 Soft x-ray imaging micropore optics large area CCD
下载PDF
SMILE soft X-ray Imager flight model CCD370 pre-flight device characterisation 被引量:1
11
作者 S.Parsons D.J.Hall +4 位作者 O.Hetherington T.W.Buggey T.Arnold M.W.J.Hubbard A.Holland 《Earth and Planetary Physics》 EI CSCD 2024年第1期25-38,共14页
Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof... Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented. 展开更多
关键词 CCD soft x-ray imager characterisation SMILE
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
12
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft x-ray imager
下载PDF
Insights into the hydrogen evolution reaction in vanadium redox flow batteries:A synchrotron radiation based X-ray imaging study
13
作者 Kerstin Köble Alexey Ershov +7 位作者 Kangjun Duan Monja Schilling Alexander Rampf Angelica Cecilia TomášFaragó Marcus Zuber Tilo Baumbach Roswitha Zeis 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期132-144,共13页
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo... The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems. 展开更多
关键词 Vanadium redox flow battery Synchrotron x-ray imaging Tomography Hydrogen evolution reaction Gas bubbles Deep learning
下载PDF
Tuberculosis Diagnosis and Visualization with a Large Vietnamese X-Ray Image Dataset
14
作者 Nguyen Trong Vinh Lam Thanh Hien +2 位作者 Ha Manh Toan Ngo Duc Vinh Do Nang Toan 《Intelligent Automation & Soft Computing》 2024年第2期281-299,共19页
Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The la... Tuberculosis is a dangerous disease to human life,and we need a lot of attempts to stop and reverse it.Significantly,in theCOVID-19 pandemic,access to medical services for tuberculosis has become very difficult.The late detection of tuberculosis could lead to danger to patient health,even death.Vietnamis one of the countries heavily affected by the COVID-19 pandemic,andmany residential areas as well as hospitals have to be isolated for a long time.Reality demands a fast and effective tuberculosis diagnosis solution to deal with the difficulty of accessingmedical services,such as an automatic tuberculosis diagnosis system.In our study,aiming to build that system,we were interested in the tuberculosis diagnosis problem from the chest X-ray images of Vietnamese patients.The chest X-ray image is an important data type to diagnose tuberculosis,and it has also received a lot of attention from deep learning researchers.This paper proposed a novel method for tuberculosis diagnosis and visualization using the deeplearning approach with a large Vietnamese X-ray image dataset.In detail,we designed our custom convolutional neural network for the X-ray image classification task and then analyzed the predicted result to provide visualization as a heat-map.To prove the performance of our network model,we conducted several experiments to compare it to another study and also to evaluate it with the dataset of this research.To support the implementation,we built a specific annotation system for tuberculosis under the requirements of radiologists in the Vietnam National Lung Hospital.A large experiment dataset was also from this hospital,and most of this data was for training the convolutional neural network model.The experiment results were evaluated regarding sensitivity,specificity,and accuracy.We achieved high scores with a training accuracy score of 0.99,and the testing specificity and sensitivity scores were over 0.9.Based on the X-ray image classification result,we visualize prediction results as heat-maps and also analyze them in comparison with annotated symptoms of radiologists. 展开更多
关键词 Tuberculosis classification Vietnamese chest x-ray deep learning
下载PDF
Anisotropy of Trabecular Bone from Ultra-Distal Radius Digital X-Ray Imaging: Effects on Bone Mineral Density and Age
15
作者 Jian-Feng Chen 《Open Journal of Radiology》 2024年第1期14-23,共10页
Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions... Background: When applied to trabecular bone X-ray images, the anisotropic properties of trabeculae located at ultra-distal radius were investigated by using the trabecular bone scores (TBS) calculated along directions parallel and perpendicular to the forearm. Methodology: Data from more than two hundred subjects were studied retrospectively. A DXA (GE Lunar Prodigy) scan of the forearm was performed on each subject to measure the bone mineral density (BMD) value at the location of ultra-distal radius, and an X-ray digital image of the same forearm was taken on the same day. The values of trabecular bone score along the direction perpendicular to the forearm, TBS<sub>x</sub>, and along the direction parallel to the forearm, TBS<sub>y</sub>, were calculated respectively. The statistics of TBS<sub>x</sub> and TBS<sub>y</sub> were calculated, and the anisotropy of the trabecular bone, which was defined as the ratio of TBS<sub>y</sub> to TBS<sub>x</sub> and changed with subjects’ BMD and age, was reported and analyzed. Results: The results show that the correlation coefficient between TBS<sub>x</sub> and TBS<sub>y</sub> was 0.72 (p BMD and age was reported. The results showed that decreased trabecular bone anisotropy was associated with deceased BMD and increased age in the subject group. Conclusions: This study shows that decreased trabecular bone anisotropy was associated with decreased BMD and increased age. 展开更多
关键词 ANISOTROPY Trabecular Bone Score Bone Mineral Density Ultra-Distal Radius Digital x-ray image
下载PDF
Transfer Learning Approach to Classify the X-Ray Image that Corresponds to Corona Disease Using ResNet50 Pre-Trained by ChexNet
16
作者 Mahyar Bolhassani 《Journal of Intelligent Learning Systems and Applications》 2024年第2期80-90,共11页
The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individu... The COVID-19 pandemic has had a widespread negative impact globally. It shares symptoms with other respiratory illnesses such as pneumonia and influenza, making rapid and accurate diagnosis essential to treat individuals and halt further transmission. X-ray imaging of the lungs is one of the most reliable diagnostic tools. Utilizing deep learning, we can train models to recognize the signs of infection, thus aiding in the identification of COVID-19 cases. For our project, we developed a deep learning model utilizing the ResNet50 architecture, pre-trained with ImageNet and CheXNet datasets. We tackled the challenge of an imbalanced dataset, the CoronaHack Chest X-Ray dataset provided by Kaggle, through both binary and multi-class classification approaches. Additionally, we evaluated the performance impact of using Focal loss versus Cross-entropy loss in our model. 展开更多
关键词 x-ray Classification Convolutional Neural Network ResNet Transfer Learning Supervised Learning COVID-19 chest x-ray
下载PDF
Diagnosis of COVID-19 from Chest X-Ray Images Using Wavelets-Based Depthwise Convolution Network 被引量:1
17
作者 Krishna Kant Singh Akansha Singh 《Big Data Mining and Analytics》 EI 2021年第2期84-93,共10页
Coronavirus disease 2019 also known as COVID-19 has become a pandemic. The disease is caused by a beta coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2(SARS-Co V-2). The severity of the disease can b... Coronavirus disease 2019 also known as COVID-19 has become a pandemic. The disease is caused by a beta coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2(SARS-Co V-2). The severity of the disease can be understood by the massive number of deaths and affected patients globally. If the diagnosis is fast-paced, the disease can be controlled in a better manner. Laboratory tests are available for diagnosis, but they are bounded by available testing kits and time. The use of radiological examinations that comprise Computed Tomography(CT) can be used for the diagnosis of the disease. Specifically, chest X-Ray images can be analysed to identify the presence of COVID-19 in a patient. In this paper, an automated method for the diagnosis of COVID-19 from the chest X-Ray images is proposed. The method presents an improved depthwise convolution neural network for analysing the chest X-Ray images. Wavelet decomposition is applied to integrate multiresolution analysis in the network. The frequency sub-bands obtained from the input images are fed in the network for identifying the disease.The network is designed to predict the class of the input image as normal, viral pneumonia, and COVID-19. The predicted output from the model is combined with Grad-CAM visualization for diagnosis. A comparative study with the existing methods is also performed. The metrics like accuracy, sensitivity, and F1-measure are calculated for performance evaluation. The performance of the proposed method is better than the existing methodologies and thus can be used for the effective diagnosis of the disease. 展开更多
关键词 CORONAVIRUS COVID-19 deep learning convolution neural network x-ray images
原文传递
Pulmonary tuberculosis detection model of chest X-ray images using convolutional neural network
18
作者 He Jin Wang Cong Chen Zhao 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2018年第6期1-6,共6页
The primary screening for pulmonary tuberculosis mainly relies on X-ray imaging all over the world. In recent years, the incidence of pulmonary tuberculosis has rebounded. This paper proposes a convolutional neural ne... The primary screening for pulmonary tuberculosis mainly relies on X-ray imaging all over the world. In recent years, the incidence of pulmonary tuberculosis has rebounded. This paper proposes a convolutional neural networks(CNN) based model on the tuberculosis detection of chest X-ray images, which is used for the automatic screening of pulmonary tuberculosis. Compared with the conventional CNN, this model can be used to detect the details of images and the areas of the disease quickly and accurately. There is an improvement in the learning speed and accuracy rate of our method, so it can better complete the work of anomaly detection and it can provide more effective auxiliary decision information for the practitioners. 展开更多
关键词 x-ray images PULMONARY TUBERCULOSIS CNN AUTOMATIC SCREENING
原文传递
High-resolution x-ray monochromatic imaging for laser plasma diagnostics based on toroidal crystal 被引量:2
19
作者 司昊轩 董佳钦 +3 位作者 方智恒 蒋励 伊圣振 王占山 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期181-186,共6页
Monochromatic x-ray imaging is an essential method for plasma diagnostics related to density information.Large-field high-resolution monochromatic imaging of a He-like iron(Fe XXV)Kαcharacteristic line(6.701 keV)for ... Monochromatic x-ray imaging is an essential method for plasma diagnostics related to density information.Large-field high-resolution monochromatic imaging of a He-like iron(Fe XXV)Kαcharacteristic line(6.701 keV)for laser plasma diagnostics was achieved using a developed toroidal crystal x-ray imager.A high-index crystal orientation Ge(531)wafer with a Bragg angle of 75.37°and the toroidal substrate were selected to obtain sufficient diffraction efficiency and compensate for astigmatism under oblique incidence.A precise offline assembly method of the toroidal crystal imager based on energy substitution was proposed,and a spatial resolution of 3-7μm was obtained by toroidal crystal imaging of a 600 line-pairs/inch Au grid within an object field of view larger than 1.0 mm.The toroidal crystal x-ray imager has been successfully tested via side-on backlight imaging experiments of the sinusoidal modulation target and a 1000 line-pairs/inch Au grid with a linewidth of 5μm using an online alignment method based on dual positioning balls to indicate the target and backlighter.This paper describes the optical design,adjustment method,and experimental results of a toroidal crystal system in a laboratory and laser facility. 展开更多
关键词 laser plasma diagnostics toroidal crystal monochromatic x-ray imaging
下载PDF
Centimeter-sized Cs_(3)Cu_(2)I_(5)single crystals grown by oleic acid assisted inverse temperature crystallization strategy and their films for high-quality X-ray imaging 被引量:1
20
作者 Tao Chen Xin Li +9 位作者 Yong Wang Feng Lin Ruliang Liu Wenhua Zhang Jie Yang Rongfei Wang Xiaoming Wen Bin Meng Xuhui Xu Chong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期382-389,共8页
Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r... Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging. 展开更多
关键词 Inverse temperature crystal growth Cs_(3)Cu_(2)I_(5)single crystal Vapor deposition Cs_(3)Cu_(2)I_(5)films x-ray imaging
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部