期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Deep Learning Approach for Detecting Covid-19 Using the Chest X-Ray Images
1
作者 Fatemeh Sadeghi Omid Rostami +1 位作者 Myung-Kyu Yi Seong Oun Hwang 《Computers, Materials & Continua》 SCIE EI 2023年第1期751-768,共18页
Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now.In the meantime,airspace opacities spreads related to lung... Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now.In the meantime,airspace opacities spreads related to lung have been of the most challenging problems in this area.A common approach to do on that score has been using chest X-ray images to better diagnose positive Covid-19 cases.Similar to most other classification problems,machine learning-based approaches have been the first/most-used candidates in this application.Many schemes based on machine/deep learning have been proposed in recent years though increasing the performance and accuracy of the system has still remained an open issue.In this paper,we develop a novel deep learning architecture to better classify the Covid-19 X-ray images.To do so,we first propose a novel multi-habitat migration artificial bee colony(MHMABC)algorithm to improve the exploitation/exploration of artificial bee colony(ABC)algorithm.After that,we optimally train the fully connected by using the proposed MHMABC algorithm to obtain better accuracy and convergence rate while reducing the execution cost.Our experiment results on Covid-19 X-ray image dataset show that the proposed deep architecture has a great performance in different important optimization parameters.Furthermore,it will be shown that the MHMABC algorithm outperforms the state-of-the-art algorithms by evaluating its performance using some wellknown benchmark datasets. 展开更多
关键词 chestx-ray image processing evolutionary deep learning covid-19
下载PDF
基于混合知识蒸馏的轻量级胸部疾病分类算法
2
作者 赖裕 李锵 +2 位作者 聂为之 白云鹏 赵丰 《光电子.激光》 CAS CSCD 北大核心 2024年第9期993-1000,共8页
针对现有胸部疾病分类算法参数量较大、对运行设备的硬件资源要求较高的问题,本文基于混合知识蒸馏(knowledge distillation,KD)的训练策略提出一种轻量级胸部疾病分类算法RMSNet。首先,该算法将优化后的残差收缩模块加入到基础网络Mobi... 针对现有胸部疾病分类算法参数量较大、对运行设备的硬件资源要求较高的问题,本文基于混合知识蒸馏(knowledge distillation,KD)的训练策略提出一种轻量级胸部疾病分类算法RMSNet。首先,该算法将优化后的残差收缩模块加入到基础网络MobileViT中,利用软阈值化的方式过滤X光片中的背景噪声;其次,提出混合知识蒸馏训练策略,利用多层级注意力图和相似性激活矩阵作为监督信号,提升轻量级模型的分类性能;最后,使用焦点损失函数(focal loss,FL)缓解数据集正负样本不均衡的问题。在ChestX-ray14数据集上展开验证,蒸馏训练后的RMSNet学生模型识别14类胸部疾病的平均AUC值为0.836,而参数量和浮点计算量分别为0.96 M和0.27 G。实验结果表明,本文算法在保持轻量化的同时分类精度更高,能有效降低算法运行时的硬件要求。 展开更多
关键词 chestx-ray14 多标签分类 卷积神经网络(CNN) 医学图像处理 知识蒸馏(KD)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部