Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now.In the meantime,airspace opacities spreads related to lung...Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now.In the meantime,airspace opacities spreads related to lung have been of the most challenging problems in this area.A common approach to do on that score has been using chest X-ray images to better diagnose positive Covid-19 cases.Similar to most other classification problems,machine learning-based approaches have been the first/most-used candidates in this application.Many schemes based on machine/deep learning have been proposed in recent years though increasing the performance and accuracy of the system has still remained an open issue.In this paper,we develop a novel deep learning architecture to better classify the Covid-19 X-ray images.To do so,we first propose a novel multi-habitat migration artificial bee colony(MHMABC)algorithm to improve the exploitation/exploration of artificial bee colony(ABC)algorithm.After that,we optimally train the fully connected by using the proposed MHMABC algorithm to obtain better accuracy and convergence rate while reducing the execution cost.Our experiment results on Covid-19 X-ray image dataset show that the proposed deep architecture has a great performance in different important optimization parameters.Furthermore,it will be shown that the MHMABC algorithm outperforms the state-of-the-art algorithms by evaluating its performance using some wellknown benchmark datasets.展开更多
基金supported in part by the Institute of Information and Communications Technology Planning and Evaluation(IITP)under the High-Potential Individuals Global Training Program under Grant 2021-0-01532(50%)in part by the National Research Foundation of Korea(NRF)under Grant 2020R1A2B5B01002145(50%)funded by the Korean Government through Ministry of Science and ICT(MSIT).
文摘Real-time detection of Covid-19 has definitely been the most widely-used world-wide classification problem since the start of the pandemic from 2020 until now.In the meantime,airspace opacities spreads related to lung have been of the most challenging problems in this area.A common approach to do on that score has been using chest X-ray images to better diagnose positive Covid-19 cases.Similar to most other classification problems,machine learning-based approaches have been the first/most-used candidates in this application.Many schemes based on machine/deep learning have been proposed in recent years though increasing the performance and accuracy of the system has still remained an open issue.In this paper,we develop a novel deep learning architecture to better classify the Covid-19 X-ray images.To do so,we first propose a novel multi-habitat migration artificial bee colony(MHMABC)algorithm to improve the exploitation/exploration of artificial bee colony(ABC)algorithm.After that,we optimally train the fully connected by using the proposed MHMABC algorithm to obtain better accuracy and convergence rate while reducing the execution cost.Our experiment results on Covid-19 X-ray image dataset show that the proposed deep architecture has a great performance in different important optimization parameters.Furthermore,it will be shown that the MHMABC algorithm outperforms the state-of-the-art algorithms by evaluating its performance using some wellknown benchmark datasets.