This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar...This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.展开更多
Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct ...Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct search techniques for maximizing the log-likelihood to obtain ML estimators instead of using the traditional EM algorithm. The density function of the GAL is only continuous but not differentiable with respect to the parameters and the appearance of the Bessel function in the density make it difficult to obtain the asymptotic covariance matrix for the entire GAL family. Using M-estimation theory, the properties of the ML estimators are investigated in this paper. The ML estimators are shown to be consistent for the GAL family and their asymptotic normality can only be guaranteed for the asymmetric Laplace (AL) family. The asymptotic covariance matrix is obtained for the AL family and it completes the results obtained previously in the literature. For the general GAL model, alternative methods of inferences based on quadratic distances (QD) are proposed. The QD methods appear to be overall more efficient than likelihood methods infinite samples using sample sizes n ≤5000 and the range of parameters often encountered for financial data. The proposed methods only require that the moment generating function of the parametric model exists and has a closed form expression and can be used for other models.展开更多
This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pru...This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pruning method to cut nodes with partial Euclidean distances (PEDs) larger than the threshold. Both the known noise value and the unknown noise value are considered to generate the threshold, which is the sum of the two values. The known noise value is the smal est PED of signals in the detected layers. The unknown noise value is generated by the noise power, the quality of service (QoS) and the signal-to-noise ratio (SNR) bound. Simulation results show that by considering both two noise values, the proposed algorithm makes an efficient reduction while the performance drops little.展开更多
Imagery assessment is an efficient method for detecting craniofacial anomalies.A cephalometric landmark matching approach may help in orthodontic diagnosis,craniofacial growth assessment and treatment planning.Automati...Imagery assessment is an efficient method for detecting craniofacial anomalies.A cephalometric landmark matching approach may help in orthodontic diagnosis,craniofacial growth assessment and treatment planning.Automatic landmark matching and anomalies detection helps face the manual labelling lim-itations and optimize preoperative planning of maxillofacial surgery.The aim of this study was to develop an accurate Cephalometric Landmark Matching method as well as an automatic system for anatomical anomalies classification.First,the Active Appearance Model(AAM)was used for the matching process.This pro-cess was achieved by the Ant Colony Optimization(ACO)algorithm enriched with proximity information.Then,the maxillofacial anomalies were classified using the Support Vector Machine(SVM).The experiments were conducted on X-ray cephalograms of 400 patients where the ground truth was produced by two experts.The frameworks achieved a landmark matching error(LE)of 0.50±1.04 and a successful landmark matching of 89.47%in the 2 mm and 3 mm range and of 100%in the 4 mm range.The classification of anomalies achieved an accuracy of 98.75%.Compared to previous work,the proposed approach is simpler and has a comparable range of acceptable matching cost and anomaly classification.Results have also shown that it outperformed the K-nearest neigh-bors(KNN)classifier.展开更多
文摘This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.
文摘Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct search techniques for maximizing the log-likelihood to obtain ML estimators instead of using the traditional EM algorithm. The density function of the GAL is only continuous but not differentiable with respect to the parameters and the appearance of the Bessel function in the density make it difficult to obtain the asymptotic covariance matrix for the entire GAL family. Using M-estimation theory, the properties of the ML estimators are investigated in this paper. The ML estimators are shown to be consistent for the GAL family and their asymptotic normality can only be guaranteed for the asymmetric Laplace (AL) family. The asymptotic covariance matrix is obtained for the AL family and it completes the results obtained previously in the literature. For the general GAL model, alternative methods of inferences based on quadratic distances (QD) are proposed. The QD methods appear to be overall more efficient than likelihood methods infinite samples using sample sizes n ≤5000 and the range of parameters often encountered for financial data. The proposed methods only require that the moment generating function of the parametric model exists and has a closed form expression and can be used for other models.
基金supported by the National Natural Science Foundation of China(61071083)
文摘This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pruning method to cut nodes with partial Euclidean distances (PEDs) larger than the threshold. Both the known noise value and the unknown noise value are considered to generate the threshold, which is the sum of the two values. The known noise value is the smal est PED of signals in the detected layers. The unknown noise value is generated by the noise power, the quality of service (QoS) and the signal-to-noise ratio (SNR) bound. Simulation results show that by considering both two noise values, the proposed algorithm makes an efficient reduction while the performance drops little.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R196)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Imagery assessment is an efficient method for detecting craniofacial anomalies.A cephalometric landmark matching approach may help in orthodontic diagnosis,craniofacial growth assessment and treatment planning.Automatic landmark matching and anomalies detection helps face the manual labelling lim-itations and optimize preoperative planning of maxillofacial surgery.The aim of this study was to develop an accurate Cephalometric Landmark Matching method as well as an automatic system for anatomical anomalies classification.First,the Active Appearance Model(AAM)was used for the matching process.This pro-cess was achieved by the Ant Colony Optimization(ACO)algorithm enriched with proximity information.Then,the maxillofacial anomalies were classified using the Support Vector Machine(SVM).The experiments were conducted on X-ray cephalograms of 400 patients where the ground truth was produced by two experts.The frameworks achieved a landmark matching error(LE)of 0.50±1.04 and a successful landmark matching of 89.47%in the 2 mm and 3 mm range and of 100%in the 4 mm range.The classification of anomalies achieved an accuracy of 98.75%.Compared to previous work,the proposed approach is simpler and has a comparable range of acceptable matching cost and anomaly classification.Results have also shown that it outperformed the K-nearest neigh-bors(KNN)classifier.