期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Efficient ECG classification based on Chi-square distance for arrhythmia detection
1
作者 Dhiah Al-Shammary Mustafa Noaman Kadhim +2 位作者 Ahmed M.Mahdi Ayman Ibaida Khandakar Ahmedb 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期1-15,共15页
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar... This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data. 展开更多
关键词 Arrhythmia classification chi-square distance Electrocardiogram(ECG)signal Particle swarm optimization(PSO)
下载PDF
Likelihood and Quadratic Distance Methods for the Generalized Asymmetric Laplace Distribution for Financial Data 被引量:1
2
作者 Andrew Luong 《Open Journal of Statistics》 2017年第2期347-368,共22页
Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct ... Maximum likelihood (ML) estimation for the generalized asymmetric Laplace (GAL) distribution also known as Variance gamma using simplex direct search algorithms is investigated. In this paper, we use numerical direct search techniques for maximizing the log-likelihood to obtain ML estimators instead of using the traditional EM algorithm. The density function of the GAL is only continuous but not differentiable with respect to the parameters and the appearance of the Bessel function in the density make it difficult to obtain the asymptotic covariance matrix for the entire GAL family. Using M-estimation theory, the properties of the ML estimators are investigated in this paper. The ML estimators are shown to be consistent for the GAL family and their asymptotic normality can only be guaranteed for the asymmetric Laplace (AL) family. The asymptotic covariance matrix is obtained for the AL family and it completes the results obtained previously in the literature. For the general GAL model, alternative methods of inferences based on quadratic distances (QD) are proposed. The QD methods appear to be overall more efficient than likelihood methods infinite samples using sample sizes n ≤5000 and the range of parameters often encountered for financial data. The proposed methods only require that the moment generating function of the parametric model exists and has a closed form expression and can be used for other models. 展开更多
关键词 M-ESTIMATORS CUMULANT Generating Function chi-square Tests Generalized Hyperbolic Distribution SIMPLEX Pattern Search Variance Gamma Minimum distance VALUE at RISK Entropic VALUE at RISK European Call Option
下载PDF
Reduced K-best sphere decoding algorithm based on minimum route distance and noise variance
3
作者 Xinyu Mao Jianjun Wu Haige Xiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期10-16,共7页
This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pru... This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pruning method to cut nodes with partial Euclidean distances (PEDs) larger than the threshold. Both the known noise value and the unknown noise value are considered to generate the threshold, which is the sum of the two values. The known noise value is the smal est PED of signals in the detected layers. The unknown noise value is generated by the noise power, the quality of service (QoS) and the signal-to-noise ratio (SNR) bound. Simulation results show that by considering both two noise values, the proposed algorithm makes an efficient reduction while the performance drops little. 展开更多
关键词 chi-square distribution csd K-best sphere decoding(SD) multiple input multiple output (MIMO) systems.
下载PDF
Robust ACO-Based Landmark Matching and Maxillofacial Anomalies Classification
4
作者 Dalel Ben Ismail Hela Elmannai +1 位作者 Souham Meshoul Mohamed Saber Naceur 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2219-2236,共18页
Imagery assessment is an efficient method for detecting craniofacial anomalies.A cephalometric landmark matching approach may help in orthodontic diagnosis,craniofacial growth assessment and treatment planning.Automati... Imagery assessment is an efficient method for detecting craniofacial anomalies.A cephalometric landmark matching approach may help in orthodontic diagnosis,craniofacial growth assessment and treatment planning.Automatic landmark matching and anomalies detection helps face the manual labelling lim-itations and optimize preoperative planning of maxillofacial surgery.The aim of this study was to develop an accurate Cephalometric Landmark Matching method as well as an automatic system for anatomical anomalies classification.First,the Active Appearance Model(AAM)was used for the matching process.This pro-cess was achieved by the Ant Colony Optimization(ACO)algorithm enriched with proximity information.Then,the maxillofacial anomalies were classified using the Support Vector Machine(SVM).The experiments were conducted on X-ray cephalograms of 400 patients where the ground truth was produced by two experts.The frameworks achieved a landmark matching error(LE)of 0.50±1.04 and a successful landmark matching of 89.47%in the 2 mm and 3 mm range and of 100%in the 4 mm range.The classification of anomalies achieved an accuracy of 98.75%.Compared to previous work,the proposed approach is simpler and has a comparable range of acceptable matching cost and anomaly classification.Results have also shown that it outperformed the K-nearest neigh-bors(KNN)classifier. 展开更多
关键词 Maxillofacial anomalies cephalometric landmarks similarity chi-square distance quadratic assignment problem ant colony optimization SVM
下载PDF
基于主成分分析和卡方距离的信号强度差指纹定位算法 被引量:7
5
作者 周非 夏鹏程 《计算机应用》 CSCD 北大核心 2019年第5期1405-1410,共6页
由于不同型号移动终端获取的接收信号强度(RSS)存在明显差异,传统的基于RSS位置指纹库的室内定位算法定位稳定性和精度不高,而现有的采用信号强度差(SSD)替代RSS构建位置指纹库的解决方案存在高数据维度、相关性冗余过高和K-近邻(KNN)... 由于不同型号移动终端获取的接收信号强度(RSS)存在明显差异,传统的基于RSS位置指纹库的室内定位算法定位稳定性和精度不高,而现有的采用信号强度差(SSD)替代RSS构建位置指纹库的解决方案存在高数据维度、相关性冗余过高和K-近邻(KNN)算法本身定位精度不高的问题。针对上述问题,提出了一种基于主成分分析(PCA)和卡方距离(CSD)的SSD指纹定位算法,使用PCA算法进行SSD数据降维和相关性冗余消除,并使用CSD度量降维后特征量间的相对距离进行位置匹配。仿真实验中,使用所提算法的SSD位置指纹库定位误差累积概率曲线高于原有RSS和SSD指纹库;相比传统的KNN算法和基于余弦相似度改进的KNN算法(COS-KNN),所提算法的平均定位误差、定位误差方差均有明显减小,时间开销稍有增加。实验结果表明,所提算法可以有效提升原有SSD指纹定位方法的定位稳定性和定位精度,能够满足室内定位的实时性需要。 展开更多
关键词 室内定位 位置指纹库 信号强度差 主成分分析 卡方距离
下载PDF
无线传感器网络中一种基于连通性的非测距定位算法 被引量:1
6
作者 徐磊磊 徐保国 《传感器与微系统》 CSCD 2016年第1期127-130,共4页
针对传统非基于测距的定位算法仅用二进制数评估连接与否而没有基于单纯的连通性导致定位误差增加的问题,基于1跳内相邻节点间距离的远近关系,提出了一种调整特征距离(CSD)算法。作为一个透明的支撑层,只需较少额外成本。仿真实验表明:... 针对传统非基于测距的定位算法仅用二进制数评估连接与否而没有基于单纯的连通性导致定位误差增加的问题,基于1跳内相邻节点间距离的远近关系,提出了一种调整特征距离(CSD)算法。作为一个透明的支撑层,只需较少额外成本。仿真实验表明:嵌入CSD后的定位算法可以有效提高定位精度。 展开更多
关键词 无线传感器网络 非测距定位 调整特征距离
下载PDF
CSD和CDD结合下的最优遥感特征指数集构建及其在湿地信息提取中的应用 被引量:1
7
作者 赵栋梁 郭超凡 +2 位作者 吴东丽 高星琪 郭逍宇 《地球信息科学学报》 CSCD 北大核心 2021年第6期1092-1105,共14页
依托中分辨率成像光谱仪完整的数据序列和丰富的光谱信息,遥感特征指数在湿地生态系统发展变化的状态、趋向和规律研究方面发挥着不可替代的优势。传统类间距离判别的遥感特征指数选取中常存在过分依赖数据统计特征、入选指数与目标地... 依托中分辨率成像光谱仪完整的数据序列和丰富的光谱信息,遥感特征指数在湿地生态系统发展变化的状态、趋向和规律研究方面发挥着不可替代的优势。传统类间距离判别的遥感特征指数选取中常存在过分依赖数据统计特征、入选指数与目标地类间生态学意义不明确、分类模型普适性差等局限性。基于此,本研究以河北省白洋淀湿地自然保护区为例,提出类可分离性距离判别(Class Separation Discrimination,CSD)与类间距离判别(Class Distance Discrimination,CDD)相结合的方法构建最优遥感特征指数集,并采用QUEST算法和马氏距离判别法构建分类决策树模型用于白洋淀湿地信息的提取研究,尝试克服传统类间距离指数选取中的不足。结果表明:运用CSD和CDD相结合的方法所选取的遥感特征指数在研究区湿地信息提取过程中的总体分类精度达到了91.32%,Kappa系数0.88,较传统的分类与回归树(Classification and Regression Tree,CART)方法,分类精度提高了1.67%;其次选取的最优指数与待提取的湿地类型均具有明确的生态学意义,如挺水植物在立地干湿交替条件下的潴育化过程决定了氧化铁比率IO可成功的将混分的耕地和挺水植物进一步分离;进一步将基于研究区2017年OLI影像构建的CSD和CDD相结合方法与CART方法的模型分别应用于研究区2019年OLI影像进行分类,基于CSD和CDD相结合方法构建的模型分类总体精度和Kappa系数分别为:86.97%、0.83,基于CART方法构建的模型无法满足分类需求,研究结果较好地证明了基于CSD和CDD相结合方法构建的模型在年际之间具有良好的适用性和稳定性。总之,CSD和CDD相结合的方法在不降低湿地信息提取精度的基础上,有效避免了传统遥感特征指数选择方法的局限性,提高了分类模型的普适性,是遥感特征指数选择算法和决策树相结合在湿地信息提取方面的有益尝试。 展开更多
关键词 遥感特征指数 马氏距离 QUEST算法 马氏距离判别法 湿地 CART算法 csd CDD
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部