Healthcare decisions are based on scientific evidence obtained from medical studies by gathering data and analyzing it to obtain the best results. When analyzing data, biostatistics is a powerful tool, but healthcare ...Healthcare decisions are based on scientific evidence obtained from medical studies by gathering data and analyzing it to obtain the best results. When analyzing data, biostatistics is a powerful tool, but healthcare professionals lack knowledge in this field. This lack of knowledge can manifest itself in situations such as choosing the wrong statistical test for the right situation or applying a statistical test without checking its assumptions, leading to inaccurate results and misleading conclusions. With the help of this “narrative review”, the aim is to bring biostatistics closer to healthcare professionals by answering certain questions: how to describe the distribution of data? how to assess the normality of data? how to transform data? and how to choose between nonparametric and parametric tests? Through this work, our hope is that the reader will be able to choose the right test for the right situation, in order to obtain the most accurate results.展开更多
Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leadi...Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leading to incorrect inferences and conclusions,and ultimately affecting the validity and accuracy of statistical inferences.Considering this,the study designs a unified analysis scheme for different data types based on parametric statistical test methods and non-parametric test methods.The data were grouped according to sample type and divided into discrete data and continuous data.To account for differences among subgroups,the conventional chi-squared test was used for discrete data.The normal distribution is the basis of many statistical methods;if the data does not follow a normal distribution,many statistical methods will fail or produce incorrect results.Therefore,before data analysis and modeling,the data were divided into normal and non-normal groups through normality testing.For normally distributed data,parametric statistical methods were used to judge the differences between groups.For non-normal data,non-parametric tests were employed to improve the accuracy of the analysis.Statistically significant indicators were retained according to the significance index P-value of the statistical test or corresponding statistics.These indicators were then combined with relevant medical background to further explore the etiology leading to the occurrence or transformation of diabetes status.展开更多
In this paper, some test statistics of Kolmogorov type and Cramervon Mises type based on projection pursuit technique are proposed for testing the sphericity problem of a high\|dimensional distribution. The limiting d...In this paper, some test statistics of Kolmogorov type and Cramervon Mises type based on projection pursuit technique are proposed for testing the sphericity problem of a high\|dimensional distribution. The limiting distributions of the test statistics are derived under the null hypothesis. The asymptotic properties of Bootstrap approximation are investigated and the tail behaviors of the statistics are studied.展开更多
Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-v...Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-valued observations is asymmetric, and its functional form may not be known or easily characterized. In this case, comparisons of the groups in terms of their respective percentiles may be appropriate as these estimates are nonparametric and more robust to outliers and other irregularities. The median test is often used to compare distributions with similar but asymmetric shapes but may be uninformative when there are excess zeros or dissimilar shapes. For zero-inflated distributions, it is useful to compare the distributions with respect to their proportion of zeros, coupled with the comparison of percentile profiles for the observed non-zero values. A simple chi-square test for simultaneous testing of these two components is proposed, applicable to both continuous and discrete data. Results of simulation studies are reported to summarize empirical power under several scenarios. We give recommendations for the minimum sample size which is necessary to achieve suitable test performance in specific examples.展开更多
The application of frequency distribution statistics to data provides objective means to assess the nature of the data distribution and viability of numerical models that are used to visualize and interpret data.Two c...The application of frequency distribution statistics to data provides objective means to assess the nature of the data distribution and viability of numerical models that are used to visualize and interpret data.Two commonly used tools are the kernel density estimation and reduced chi-squared statistic used in combination with a weighted mean.Due to the wide applicability of these tools,we present a Java-based computer application called KDX to facilitate the visualization of data and the utilization of these numerical tools.展开更多
This article proposes the maximum test for a sequence of quadratic form statistics about score test in logistic regression model which can be applied to genetic and medicine fields.Theoretical properties about the max...This article proposes the maximum test for a sequence of quadratic form statistics about score test in logistic regression model which can be applied to genetic and medicine fields.Theoretical properties about the maximum test are derived.Extensive simulation studies are conducted to testify powers robustness of the maximum test compared to other two existed test.We also apply the maximum test to a real dataset about multiple gene variables association analysis.展开更多
Safety-critical system (SCS) has highly demand for dependability, which requires plenty of resource to ensure that the system under test (SUT) satisfies the dependability requirement. In this paper, a new SCS rapi...Safety-critical system (SCS) has highly demand for dependability, which requires plenty of resource to ensure that the system under test (SUT) satisfies the dependability requirement. In this paper, a new SCS rapid testing method is proposed to improve SCS adaptive dependability testing. The result of each test execution is saved in calculation memory unit and evaluated as an algorithm model. Then the least quantity of scenario test case for next test execution will be calculated according to the promised SUT's confidence level. The feedback data are generated to weight controller as the guideline for the further testing. Finally, a compre- hensive experiment study demonstrates that this adaptive testing method can really work in practice. This rapid testing method, testing result statistics-based adaptive control, makes the SCS dependability testing much more effective.展开更多
This paper describes the statistical methods of the comparison of the incidence or mortality rates in cancer registry and descriptive epidemiology, and the features of microcomputer program (CANTEST) which was designe...This paper describes the statistical methods of the comparison of the incidence or mortality rates in cancer registry and descriptive epidemiology, and the features of microcomputer program (CANTEST) which was designed to perform the methods. The program was written in IBM BASIC language. Using the program CANTEST we presented here the user can do several statistical tests or estimations as follow: 1. the comparison of the adjusted rates which were calculated by directly or indirectly standardized methods, 2. the calculation of the slope of regression line for testing the linear trends of the adjusted rates, 3. the estimation of the 95% or 99%conndence intervals of the directly adjusted rates, of the cumulative rates (0-64 and 0-74), and of the cumulative risk. Several examples are presented for testing the performances of the program.展开更多
We study the asymptotics tot the statistic of chi-square in type Ⅱ error. By the contraction principle, the large deviations and moderate deviations are obtained, and the rate function of moderate deviations can be c...We study the asymptotics tot the statistic of chi-square in type Ⅱ error. By the contraction principle, the large deviations and moderate deviations are obtained, and the rate function of moderate deviations can be calculated explicitly which is a squared function.展开更多
In large sample studies where distributions may be skewed and not readily transformed to symmetry, it may be of greater interest to compare different distributions in terms of percentiles rather than means. For exampl...In large sample studies where distributions may be skewed and not readily transformed to symmetry, it may be of greater interest to compare different distributions in terms of percentiles rather than means. For example, it may be more informative to compare two or more populations with respect to their within population distributions by testing the hypothesis that their corresponding respective 10th, 50th, and 90th percentiles are equal. As a generalization of the median test, the proposed test statistic is asymptotically distributed as Chi-square with degrees of freedom dependent upon the number of percentiles tested and constraints of the null hypothesis. Results from simulation studies are used to validate the nominal 0.05 significance level under the null hypothesis, and asymptotic power properties that are suitable for testing equality of percentile profiles against selected profile discrepancies for a variety of underlying distributions. A pragmatic example is provided to illustrate the comparison of the percentile profiles for four body mass index distributions.展开更多
Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Kn...Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated.展开更多
Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Kn...Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated.展开更多
Two statistical validation methods were used to evaluate the confidence level of the Total Column Ozone (TCO) measurements recorded by satellite systems measuring simultaneously, one using the normal distribution and ...Two statistical validation methods were used to evaluate the confidence level of the Total Column Ozone (TCO) measurements recorded by satellite systems measuring simultaneously, one using the normal distribution and another using the Mann-Whitney test. First, the reliability of the TCO measurements was studied hemispherically. While similar coincidences and levels of significance > 0.05 were found with the two statistical tests, an enormous variability in the levels of significance throughout the year was also exposed. Then, using the same statistical comparison methods, a latitudinal study was carried out in order to elucidate the geographical distribution that gave rise to this variability. Our study reveals that between the TOMS and OMI measurements in 2005 there was only a coincidence in 50% of the latitudes, which explained the variability. This implies that for 2005, the TOMS measurements are not completely reliable, except between the -50° and -15° latitude band in the southern hemisphere and between +15° and +50° latitude band in the northern hemisphere. In the case of OMI-OMPS, we observe that between 2011 and 2016 the measurements of both satellite systems are reasonably similar with a confidence level higher than 95%. However, in 2017 a band with a width of 20° latitude centered on the equator appeared, in which the significance levels were much less than 0.05, indicating that one of the measurement systems had begun to fail. In 2018, the fault was not only located in the equator, but was also replicated in various bands in the Southern Hemisphere. We interpret this as evidence of irreversible failure in one of the measurement systems.展开更多
There are a few statistics testing the homogeneity of odds ratios across strata. Asymptotic statistics lose their power in the “sparse-data” setting. Both asymptotic statistics and exact tests have low power when th...There are a few statistics testing the homogeneity of odds ratios across strata. Asymptotic statistics lose their power in the “sparse-data” setting. Both asymptotic statistics and exact tests have low power when the sample sizes are small. We created a set of U statistics and compared them with some existing statistics in testing homogeneity of OR at different data settings. We evaluated their performance in terms of the empirical size and power via Monto Carlo simulations. Our results showed that two of the U-statistics under our study had higher power for testing homogeneity of odds ratios for 2 by 2 contingency tables. The application of the tests was illustrated in two real examples.展开更多
Aim To improve the efficiency of fatigue material tests and relevant statistical treatment of test data. Methods\ Least square approach and other special treatments were used. Results and Conclusion\ The concepts...Aim To improve the efficiency of fatigue material tests and relevant statistical treatment of test data. Methods\ Least square approach and other special treatments were used. Results and Conclusion\ The concepts of each phase in fatigue tests and statistical treatment are clarified. The method proposed leads to three important properties. Reduced number of specimens brings to the advantage of lowering test expenditures. The whole test procedure has more flexibility for there is no need to conduct many tests at the same stress level as in traditional cases.展开更多
The uniaxial compressive strength(UCS) of rock is an important parameter required for design and analysis of rock structures,and rock mass classification.Uniaxial compression test is the direct method to obtain the UC...The uniaxial compressive strength(UCS) of rock is an important parameter required for design and analysis of rock structures,and rock mass classification.Uniaxial compression test is the direct method to obtain the UCS values.However,these tests are generally tedious,time-consuming,expensive,and sometimes impossible to perform due to difficult rock conditions.Therefore,several empirical equations have been developed to estimate the UCS from results of index and physical tests of rock.Nevertheless,numerous empirical models available in the literature often make it difficult for mining engineers to decide which empirical equation provides the most reliable estimate of UCS.This study evaluates estimation of UCS of rocks from several empirical equations.The study uses data of point load strength(Is(50)),Schmidt rebound hardness(SRH),block punch index(BPI),effective porosity(n) and density(ρ)as inputs to empirically estimate the UCS.The estimated UCS values from empirical equations are compared with experimentally obtained or measured UCS values,using statistical analyses.It shows that the reliability of UCS estimated from empirical equations depends on the quality of data used to develop the equations,type of input data used in the equations,and the quality of input data from index or physical tests.The results show that the point load strength(Is(50)) is the most reliable index for estimating UCS among the five types of tests evaluated.Because of type-specific nature of rock,restricting the use of empirical equations to the similar rock types for which they are developed is one of the measures to ensure satisfactory prediction performance of empirical equations.展开更多
In this paper, asymptotic expansions of the distribution of the likelihood ratio statistic for testing sphericity in a crowth curve model have been derived in the null and nonnull cases when the alternatives are dose ...In this paper, asymptotic expansions of the distribution of the likelihood ratio statistic for testing sphericity in a crowth curve model have been derived in the null and nonnull cases when the alternatives are dose to the null hypothesis. These expansions are given in series form of beta distributions.展开更多
Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characterist...Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characteristics since their expressions vary in different degrees. Taking the development of DUS Test Guideline of Ranunculus asiaticus L. as an example, this paper applied statistic-based approaches for the analyses of quantitative characteristics. We selected 9 quantitative characteristics from 18 pre-selected characteristics, based on within-variety uniformity, stability between different growing cycles, and correlation among characteristics, by the analyses of coefficient of variation, paired-samples t-test and partial correlation. The expression ranges of the 9 selected quantitative characteristics were divided into different states using descriptive statistics and distribution frequency of varieties. Eight of the 9 selected quantitative characteristics were categorized as standard characteristics as they showed one peak in distribution frequency of 120 varieties in various expressions of the characteristics, whereas, plant height can be categorized as grouping characteristic since it gave two peaks, and can group the varieties into pot and cut varieties. Finally, box-plot was applied to visually select the example varieties, and varieties 7, 12, and 28 were determined as the example varieties for plant height. The methods described in this paper are effective for the selection of quantitative characteristics, division of expression ranges, and selection of example varieties in Ranunculus asiaticus L. for DUS test, and may also be interest for other plant genera.展开更多
文摘Healthcare decisions are based on scientific evidence obtained from medical studies by gathering data and analyzing it to obtain the best results. When analyzing data, biostatistics is a powerful tool, but healthcare professionals lack knowledge in this field. This lack of knowledge can manifest itself in situations such as choosing the wrong statistical test for the right situation or applying a statistical test without checking its assumptions, leading to inaccurate results and misleading conclusions. With the help of this “narrative review”, the aim is to bring biostatistics closer to healthcare professionals by answering certain questions: how to describe the distribution of data? how to assess the normality of data? how to transform data? and how to choose between nonparametric and parametric tests? Through this work, our hope is that the reader will be able to choose the right test for the right situation, in order to obtain the most accurate results.
基金National Natural Science Foundation of China(No.12271261)Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.SJCX230368)。
文摘Normality testing is a fundamental hypothesis test in the statistical analysis of key biological indicators of diabetes.If this assumption is violated,it may cause the test results to deviate from the true value,leading to incorrect inferences and conclusions,and ultimately affecting the validity and accuracy of statistical inferences.Considering this,the study designs a unified analysis scheme for different data types based on parametric statistical test methods and non-parametric test methods.The data were grouped according to sample type and divided into discrete data and continuous data.To account for differences among subgroups,the conventional chi-squared test was used for discrete data.The normal distribution is the basis of many statistical methods;if the data does not follow a normal distribution,many statistical methods will fail or produce incorrect results.Therefore,before data analysis and modeling,the data were divided into normal and non-normal groups through normality testing.For normally distributed data,parametric statistical methods were used to judge the differences between groups.For non-normal data,non-parametric tests were employed to improve the accuracy of the analysis.Statistically significant indicators were retained according to the significance index P-value of the statistical test or corresponding statistics.These indicators were then combined with relevant medical background to further explore the etiology leading to the occurrence or transformation of diabetes status.
文摘In this paper, some test statistics of Kolmogorov type and Cramervon Mises type based on projection pursuit technique are proposed for testing the sphericity problem of a high\|dimensional distribution. The limiting distributions of the test statistics are derived under the null hypothesis. The asymptotic properties of Bootstrap approximation are investigated and the tail behaviors of the statistics are studied.
文摘Zero-inflated distributions are common in statistical problems where there is interest in testing homogeneity of two or more independent groups. Often, the underlying distribution that has an inflated number of zero-valued observations is asymmetric, and its functional form may not be known or easily characterized. In this case, comparisons of the groups in terms of their respective percentiles may be appropriate as these estimates are nonparametric and more robust to outliers and other irregularities. The median test is often used to compare distributions with similar but asymmetric shapes but may be uninformative when there are excess zeros or dissimilar shapes. For zero-inflated distributions, it is useful to compare the distributions with respect to their proportion of zeros, coupled with the comparison of percentile profiles for the observed non-zero values. A simple chi-square test for simultaneous testing of these two components is proposed, applicable to both continuous and discrete data. Results of simulation studies are reported to summarize empirical power under several scenarios. We give recommendations for the minimum sample size which is necessary to achieve suitable test performance in specific examples.
文摘The application of frequency distribution statistics to data provides objective means to assess the nature of the data distribution and viability of numerical models that are used to visualize and interpret data.Two commonly used tools are the kernel density estimation and reduced chi-squared statistic used in combination with a weighted mean.Due to the wide applicability of these tools,we present a Java-based computer application called KDX to facilitate the visualization of data and the utilization of these numerical tools.
基金This work of Jiayan Zhu is partially supported by seeding project funding(2019ZZX026)scientific research project funding of talent recruitment,and start up funding for scientific research of Hubei University of Chinese MedicineThis work of Zhengbang Li is partially supported by self-determined research funds of Central China Normal University from colleges'basic research of MOE(CCNU18QN031).
文摘This article proposes the maximum test for a sequence of quadratic form statistics about score test in logistic regression model which can be applied to genetic and medicine fields.Theoretical properties about the maximum test are derived.Extensive simulation studies are conducted to testify powers robustness of the maximum test compared to other two existed test.We also apply the maximum test to a real dataset about multiple gene variables association analysis.
基金the National 863 Program under Grant No. 2006AA01Z173.
文摘Safety-critical system (SCS) has highly demand for dependability, which requires plenty of resource to ensure that the system under test (SUT) satisfies the dependability requirement. In this paper, a new SCS rapid testing method is proposed to improve SCS adaptive dependability testing. The result of each test execution is saved in calculation memory unit and evaluated as an algorithm model. Then the least quantity of scenario test case for next test execution will be calculated according to the promised SUT's confidence level. The feedback data are generated to weight controller as the guideline for the further testing. Finally, a compre- hensive experiment study demonstrates that this adaptive testing method can really work in practice. This rapid testing method, testing result statistics-based adaptive control, makes the SCS dependability testing much more effective.
文摘This paper describes the statistical methods of the comparison of the incidence or mortality rates in cancer registry and descriptive epidemiology, and the features of microcomputer program (CANTEST) which was designed to perform the methods. The program was written in IBM BASIC language. Using the program CANTEST we presented here the user can do several statistical tests or estimations as follow: 1. the comparison of the adjusted rates which were calculated by directly or indirectly standardized methods, 2. the calculation of the slope of regression line for testing the linear trends of the adjusted rates, 3. the estimation of the 95% or 99%conndence intervals of the directly adjusted rates, of the cumulative rates (0-64 and 0-74), and of the cumulative risk. Several examples are presented for testing the performances of the program.
基金the National Natural Science Foundation of China (10571139)
文摘We study the asymptotics tot the statistic of chi-square in type Ⅱ error. By the contraction principle, the large deviations and moderate deviations are obtained, and the rate function of moderate deviations can be calculated explicitly which is a squared function.
文摘In large sample studies where distributions may be skewed and not readily transformed to symmetry, it may be of greater interest to compare different distributions in terms of percentiles rather than means. For example, it may be more informative to compare two or more populations with respect to their within population distributions by testing the hypothesis that their corresponding respective 10th, 50th, and 90th percentiles are equal. As a generalization of the median test, the proposed test statistic is asymptotically distributed as Chi-square with degrees of freedom dependent upon the number of percentiles tested and constraints of the null hypothesis. Results from simulation studies are used to validate the nominal 0.05 significance level under the null hypothesis, and asymptotic power properties that are suitable for testing equality of percentile profiles against selected profile discrepancies for a variety of underlying distributions. A pragmatic example is provided to illustrate the comparison of the percentile profiles for four body mass index distributions.
文摘Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated.
文摘Choosing appropriate statistical tests is crucial but deciding which tests to use can be challenging. Different tests suit different types of data and research questions, so it is important to choose the right one. Knowing how to select an appropriate test can lead to more accurate results. Invalid results and misleading conclusions may be drawn from a study if an incorrect statistical test is used. Therefore, to avoid these it is essential to understand the nature of the data, the research question, and the assumptions of the tests before selecting one. This is because there are a wide variety of tests available. This paper provides a step-by-step approach to selecting the right statistical test for any study, with an explanation of when it is appropriate to use it and relevant examples of each statistical test. Furthermore, this guide provides a comprehensive overview of the assumptions of each test and what to do if these assumptions are violated.
文摘Two statistical validation methods were used to evaluate the confidence level of the Total Column Ozone (TCO) measurements recorded by satellite systems measuring simultaneously, one using the normal distribution and another using the Mann-Whitney test. First, the reliability of the TCO measurements was studied hemispherically. While similar coincidences and levels of significance > 0.05 were found with the two statistical tests, an enormous variability in the levels of significance throughout the year was also exposed. Then, using the same statistical comparison methods, a latitudinal study was carried out in order to elucidate the geographical distribution that gave rise to this variability. Our study reveals that between the TOMS and OMI measurements in 2005 there was only a coincidence in 50% of the latitudes, which explained the variability. This implies that for 2005, the TOMS measurements are not completely reliable, except between the -50° and -15° latitude band in the southern hemisphere and between +15° and +50° latitude band in the northern hemisphere. In the case of OMI-OMPS, we observe that between 2011 and 2016 the measurements of both satellite systems are reasonably similar with a confidence level higher than 95%. However, in 2017 a band with a width of 20° latitude centered on the equator appeared, in which the significance levels were much less than 0.05, indicating that one of the measurement systems had begun to fail. In 2018, the fault was not only located in the equator, but was also replicated in various bands in the Southern Hemisphere. We interpret this as evidence of irreversible failure in one of the measurement systems.
文摘There are a few statistics testing the homogeneity of odds ratios across strata. Asymptotic statistics lose their power in the “sparse-data” setting. Both asymptotic statistics and exact tests have low power when the sample sizes are small. We created a set of U statistics and compared them with some existing statistics in testing homogeneity of OR at different data settings. We evaluated their performance in terms of the empirical size and power via Monto Carlo simulations. Our results showed that two of the U-statistics under our study had higher power for testing homogeneity of odds ratios for 2 by 2 contingency tables. The application of the tests was illustrated in two real examples.
文摘Aim To improve the efficiency of fatigue material tests and relevant statistical treatment of test data. Methods\ Least square approach and other special treatments were used. Results and Conclusion\ The concepts of each phase in fatigue tests and statistical treatment are clarified. The method proposed leads to three important properties. Reduced number of specimens brings to the advantage of lowering test expenditures. The whole test procedure has more flexibility for there is no need to conduct many tests at the same stress level as in traditional cases.
文摘The uniaxial compressive strength(UCS) of rock is an important parameter required for design and analysis of rock structures,and rock mass classification.Uniaxial compression test is the direct method to obtain the UCS values.However,these tests are generally tedious,time-consuming,expensive,and sometimes impossible to perform due to difficult rock conditions.Therefore,several empirical equations have been developed to estimate the UCS from results of index and physical tests of rock.Nevertheless,numerous empirical models available in the literature often make it difficult for mining engineers to decide which empirical equation provides the most reliable estimate of UCS.This study evaluates estimation of UCS of rocks from several empirical equations.The study uses data of point load strength(Is(50)),Schmidt rebound hardness(SRH),block punch index(BPI),effective porosity(n) and density(ρ)as inputs to empirically estimate the UCS.The estimated UCS values from empirical equations are compared with experimentally obtained or measured UCS values,using statistical analyses.It shows that the reliability of UCS estimated from empirical equations depends on the quality of data used to develop the equations,type of input data used in the equations,and the quality of input data from index or physical tests.The results show that the point load strength(Is(50)) is the most reliable index for estimating UCS among the five types of tests evaluated.Because of type-specific nature of rock,restricting the use of empirical equations to the similar rock types for which they are developed is one of the measures to ensure satisfactory prediction performance of empirical equations.
文摘In this paper, asymptotic expansions of the distribution of the likelihood ratio statistic for testing sphericity in a crowth curve model have been derived in the null and nonnull cases when the alternatives are dose to the null hypothesis. These expansions are given in series form of beta distributions.
基金supported by the Special Fund for Agroscientific Research in the Public Interest of Ministry of Agriculture,China(200903008-14)
文摘Selection of quantitative characteristics, division of their expression ranges, and selection of example varieties are key issues on developing DUS Test Guidelines, which are more crucial for quantitative characteristics since their expressions vary in different degrees. Taking the development of DUS Test Guideline of Ranunculus asiaticus L. as an example, this paper applied statistic-based approaches for the analyses of quantitative characteristics. We selected 9 quantitative characteristics from 18 pre-selected characteristics, based on within-variety uniformity, stability between different growing cycles, and correlation among characteristics, by the analyses of coefficient of variation, paired-samples t-test and partial correlation. The expression ranges of the 9 selected quantitative characteristics were divided into different states using descriptive statistics and distribution frequency of varieties. Eight of the 9 selected quantitative characteristics were categorized as standard characteristics as they showed one peak in distribution frequency of 120 varieties in various expressions of the characteristics, whereas, plant height can be categorized as grouping characteristic since it gave two peaks, and can group the varieties into pot and cut varieties. Finally, box-plot was applied to visually select the example varieties, and varieties 7, 12, and 28 were determined as the example varieties for plant height. The methods described in this paper are effective for the selection of quantitative characteristics, division of expression ranges, and selection of example varieties in Ranunculus asiaticus L. for DUS test, and may also be interest for other plant genera.