Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconc...Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1,2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.展开更多
快速准确地获取鄱阳湖区域湿地信息,对湿地进行动态监测具有重要价值。本文以国产高分一号(GF-1)影像和辅助地学数据作为数据源,将GF-1影像获取的归一化植被指数(Normalized Differential Vegetation Index,NDVI)、基于蓝光波段的归一...快速准确地获取鄱阳湖区域湿地信息,对湿地进行动态监测具有重要价值。本文以国产高分一号(GF-1)影像和辅助地学数据作为数据源,将GF-1影像获取的归一化植被指数(Normalized Differential Vegetation Index,NDVI)、基于蓝光波段的归一化差异水体指数(Normalized Difference Water Index based on Bule light,NDWI-B)以及数字高程模型(Digital Elevation Model,DEM)作为分类变量,采用卡方自动交互检测(CHi-squared Automatic Interaction Detection,CHAID)决策树算法构建分类规则,并进行研究区范围内的湿地信息提取。最后,采用混淆矩阵对分类结果进行精度验证,并与最大似然法监督分类结果进行比较。结果表明,分类结果的总体精度和Kappa系数分别为85.6%和0.82,较最大似然法监督分类结果分别提高了9.6%和0.12,是鄱阳湖区域湿地信息提取的有效方法。展开更多
文摘Background: In the past decades, studies on infant anemia have mainly focused on rural areas of China. With the increasing heterogeneity of population in recent years, available information on infant anemia is inconclusive in large cities of China, especially with comparison between native residents and floating population. This population-based cross-sectional study was implemented to determine the anemic status of infants as well as the risk factors in a representative downtown area of Beijing. Methods: As useful methods to build a predictive model, Chi-squared automatic interaction detection (CHAID) decision tree analysis and logistic regression analysis were introduced to explore risk factors of infant anemia. A total of 1091 infants aged 6-12 months together with their parents/caregivers living at Heping Avenue Subdistrict of Beijing were surveyed from January 1,2013 to December 31, 2014. Results: The prevalence of anemia was 12.60% with a range of 3.47%-40.00% in different subgroup characteristics. The CHAID decision tree model has demonstrated multilevel interaction among risk factors through stepwise pathways to detect anemia. Besides the three predictors identified by logistic regression model including maternal anemia during pregnancy, exclusive breastfeeding in the first 6 months, and floating population, CHAID decision tree analysis also identified the fourth risk factor, the maternal educational level, with higher overall classification accuracy and larger area below the receiver operating characteristic curve. Conclusions: The infant anemic status in metropolis is complex and should be carefully considered by the basic health care practitioners. CHAID decision tree analysis has demonstrated a better performance in hierarchical analysis of population with great heterogeneity. Risk factors identified by this study might be meaningful in the early detection and prompt treatment of infant anemia in large cities.
文摘快速准确地获取鄱阳湖区域湿地信息,对湿地进行动态监测具有重要价值。本文以国产高分一号(GF-1)影像和辅助地学数据作为数据源,将GF-1影像获取的归一化植被指数(Normalized Differential Vegetation Index,NDVI)、基于蓝光波段的归一化差异水体指数(Normalized Difference Water Index based on Bule light,NDWI-B)以及数字高程模型(Digital Elevation Model,DEM)作为分类变量,采用卡方自动交互检测(CHi-squared Automatic Interaction Detection,CHAID)决策树算法构建分类规则,并进行研究区范围内的湿地信息提取。最后,采用混淆矩阵对分类结果进行精度验证,并与最大似然法监督分类结果进行比较。结果表明,分类结果的总体精度和Kappa系数分别为85.6%和0.82,较最大似然法监督分类结果分别提高了9.6%和0.12,是鄱阳湖区域湿地信息提取的有效方法。