The influence of genetic engineering on daily life is prominent,from genetically modified food to transgenic,antibiotic resistant plants.The direct manipulation of an organism’s genotype has opened the door to a myri...The influence of genetic engineering on daily life is prominent,from genetically modified food to transgenic,antibiotic resistant plants.The direct manipulation of an organism’s genotype has opened the door to a myriad of applications in an effort to treat chronic diseases.This paper proposes the unification of chimeric DNA technology and three-dimensional bioprinting to spark the development of new therapies.While studies of chimeric DNA,i.e.recombinant DNA,have been conducted since 1970,bioprinting is a budding method for tissue engineering and regenerative medicine.Both technologies are further described in the background section of this paper,and followed by a detailed analysis into current research,benefits,and limitations of 3D printed chimeric biomate-rials.Major benefits include low-cost and effective treatments for cancer,bio-morphological nanostructures for targeted drug delivery,personalized medicine with the use of stem cells,and a significantly reduced rate of addi-tional surgeries and transplant rejection after implantation.However,there are several shortcomings with current chimeric DNA applications,e.g.CAR-T cell therapies,and ethical dilemmas regarding the creation and regulation of human-animal chimeras.This review then presents future directions,in which inks made from chimeric DNA and live cells can be printed into bioactive engineered tissue,or biodegradable vehicles for targeted delivery of hiPSCs or CAR T-cells.Finally,this review concludes with a reaffirmation of its main points and the authors’thoughts on the potential of 3D printed chimeric biomaterials.展开更多
文摘The influence of genetic engineering on daily life is prominent,from genetically modified food to transgenic,antibiotic resistant plants.The direct manipulation of an organism’s genotype has opened the door to a myriad of applications in an effort to treat chronic diseases.This paper proposes the unification of chimeric DNA technology and three-dimensional bioprinting to spark the development of new therapies.While studies of chimeric DNA,i.e.recombinant DNA,have been conducted since 1970,bioprinting is a budding method for tissue engineering and regenerative medicine.Both technologies are further described in the background section of this paper,and followed by a detailed analysis into current research,benefits,and limitations of 3D printed chimeric biomate-rials.Major benefits include low-cost and effective treatments for cancer,bio-morphological nanostructures for targeted drug delivery,personalized medicine with the use of stem cells,and a significantly reduced rate of addi-tional surgeries and transplant rejection after implantation.However,there are several shortcomings with current chimeric DNA applications,e.g.CAR-T cell therapies,and ethical dilemmas regarding the creation and regulation of human-animal chimeras.This review then presents future directions,in which inks made from chimeric DNA and live cells can be printed into bioactive engineered tissue,or biodegradable vehicles for targeted delivery of hiPSCs or CAR T-cells.Finally,this review concludes with a reaffirmation of its main points and the authors’thoughts on the potential of 3D printed chimeric biomaterials.