Along with the progress in breadth and depth of international arms controland disarmament, US-led Western nations are increasingly in need of China’s co-operation. They began to seek consultations and coordination wi...Along with the progress in breadth and depth of international arms controland disarmament, US-led Western nations are increasingly in need of China’s co-operation. They began to seek consultations and coordination with China. This hasled to China’ s bigger say and rising role in international arms control.展开更多
This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio ind...This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.展开更多
Increasingly engaged in maritime governance,China has developed its distinct vision and gradually established a complete theoretical system surrounding it.In terms of discourse,China has proposed a collection of conce...Increasingly engaged in maritime governance,China has developed its distinct vision and gradually established a complete theoretical system surrounding it.In terms of discourse,China has proposed a collection of concepts and ideas including a maritime community with a shared future,the 2lst Century Maritime Silk Road,Blue Partnerships,and marine ecological civilization.In terms of connotations,China champions such values as lasting peace,common prosperity,openness and inclusiveness,and cleanness and beautifulness.Exteriorly and interiorly,we can observe the unique character of China's vision concerning maritime governance,which will continue to upgrade and bear fruit in future practices,boosting the development of Chinese maritime governance theories,multilateral maritime cooperation,and ocean-related international legislation.Guided by its vision,China is expected to contribute more to global maritime security and marine ecological civilization.展开更多
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang...Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.展开更多
Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become...Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become an important part of oil and gas exploration there.Through years of comprehensive geological research in China's sea area,it has been revealed that it has undergone multiple occurrences of tectonic opening and closing movements in varying degrees in the Paleogene,forming 26 Cenozoic sedimentary basins of various types,such as active continental margin,passive continental margin,transitional continental margin and drift rift basins.In the present study,it is observed for the first time that coal type source rocks are mainly developed in 14 continental margin basins in China's sea area,revealing that a very large C-shaped coal-bearing basin group developed there in the Cenozoic.Next,based on the coupling analysis of paleoclimate,paleobotany,paleogeography and paleostructure,it is observed that there are five coal-forming periods in China's sea area,namely the Paleocene,Eocene,early Oligocene,late Oligocene and Miocene-Pliocene,and the coal-forming age is gradually new from north to south.It is also found that the coal seams in the sea area are mainly developed in three coal-forming environments in Cenozoic,namely delta,fan delta and tidal flat-lagoon.The coal seams developed in different environments are characterized by thin thickness,many layers and poor stability.However,the coal-bearing series source rocks in China's sea area have a wide distribution range,very high thickness and large amount,thus forming a material basis for the formation of rich coal type oil and gas.展开更多
针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建...针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建立了变压器热路模型,以计算绕组热点与顶部油温度;其次,采用粒子群优化(particle swarm optimization,PSO)算法拟合热路模型参数,并基于2台不同型号变压器的运行数据,对热路模型的计算精度与拟合参数适用性进行有效性验证;最后,参考GB/T1094.7负载导则给出的温升限值,基于温升特性提出了负荷能力评估模型。分析结果表明,该研究所提热路模型计算热点温度的误差不大于2.35℃,在工程允许范围内;正常周期性负荷下当环境温度低于1℃时,关闭1组子散热器后仍满足温升约束。展开更多
文摘Along with the progress in breadth and depth of international arms controland disarmament, US-led Western nations are increasingly in need of China’s co-operation. They began to seek consultations and coordination with China. This hasled to China’ s bigger say and rising role in international arms control.
基金financial support from the China Postdoctoral Science Foundation project(No.2023M733253)。
文摘This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.
基金the phased result of a key research project supported by the National Social Science Fund of China(22VHQ010).
文摘Increasingly engaged in maritime governance,China has developed its distinct vision and gradually established a complete theoretical system surrounding it.In terms of discourse,China has proposed a collection of concepts and ideas including a maritime community with a shared future,the 2lst Century Maritime Silk Road,Blue Partnerships,and marine ecological civilization.In terms of connotations,China champions such values as lasting peace,common prosperity,openness and inclusiveness,and cleanness and beautifulness.Exteriorly and interiorly,we can observe the unique character of China's vision concerning maritime governance,which will continue to upgrade and bear fruit in future practices,boosting the development of Chinese maritime governance theories,multilateral maritime cooperation,and ocean-related international legislation.Guided by its vision,China is expected to contribute more to global maritime security and marine ecological civilization.
基金Under the auspices of National Natural Science Foundation of China (No.42176221,41901133)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA19060205)Seed project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YIC-E3518907)。
文摘Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.
基金The Ministry of Land and Resources Project of Oil and Gas Resource Investigation and Evaluation under contract Nos XQ-2004-05 and XQ-2007-05the National Key Basic Research Program of China(973 Program)under contract No.2009CB219400+3 种基金the National Science and Technology Major Project under contract Nos 2008ZX05025,2011ZX05025 and2016ZX05026the National Natural Science Foundation under contract Nos 41872172 and 42072188the Research and Innovation Team Support Program of Shandong University of Science and Technology under contract No.2018TDJH101Hebei Provincial Resources Survey and Research Laboratory Open Foundation。
文摘Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become an important part of oil and gas exploration there.Through years of comprehensive geological research in China's sea area,it has been revealed that it has undergone multiple occurrences of tectonic opening and closing movements in varying degrees in the Paleogene,forming 26 Cenozoic sedimentary basins of various types,such as active continental margin,passive continental margin,transitional continental margin and drift rift basins.In the present study,it is observed for the first time that coal type source rocks are mainly developed in 14 continental margin basins in China's sea area,revealing that a very large C-shaped coal-bearing basin group developed there in the Cenozoic.Next,based on the coupling analysis of paleoclimate,paleobotany,paleogeography and paleostructure,it is observed that there are five coal-forming periods in China's sea area,namely the Paleocene,Eocene,early Oligocene,late Oligocene and Miocene-Pliocene,and the coal-forming age is gradually new from north to south.It is also found that the coal seams in the sea area are mainly developed in three coal-forming environments in Cenozoic,namely delta,fan delta and tidal flat-lagoon.The coal seams developed in different environments are characterized by thin thickness,many layers and poor stability.However,the coal-bearing series source rocks in China's sea area have a wide distribution range,very high thickness and large amount,thus forming a material basis for the formation of rich coal type oil and gas.