Cotton(Gossypium spp.)is a pivotal crop in the global textile industry,providing essential natural fibers.Additionally,cottonseed offers significant value as a source of oil and as feed for livestock(Huang et al.2021;...Cotton(Gossypium spp.)is a pivotal crop in the global textile industry,providing essential natural fibers.Additionally,cottonseed offers significant value as a source of oil and as feed for livestock(Huang et al.2021;Wen et al.2023).The sector,dependent on cotton,features a comprehensive value chain extending from the processing of fibers to the production of finished textiles,and it employs tens of millions of individuals(Dorward et al.1970).展开更多
On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole sect...On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole section at a depth of 3925 metres and at a temperature of 148℃,the device collected high-quality permeability logging data.This marks a key technological breakthrough from 0 to 1 in permeability logging,and lays the foundation for the next step in developing a complete set of permeability logging equipment.展开更多
Purpose:To address the“anomalies”that occur when scientific breakthroughs emerge,this study focuses on identifying early signs and nascent stages of breakthrough innovations from the perspective of outliers,aiming t...Purpose:To address the“anomalies”that occur when scientific breakthroughs emerge,this study focuses on identifying early signs and nascent stages of breakthrough innovations from the perspective of outliers,aiming to achieve early identification of scientific breakthroughs in papers.Design/methodology/approach:This study utilizes semantic technology to extract research entities from the titles and abstracts of papers to represent each paper’s research content.Outlier detection methods are then employed to measure and analyze the anomalies in breakthrough papers during their early stages.The development and evolution process are traced using literature time tags.Finally,a case study is conducted using the key publications of the 2021 Nobel Prize laureates in Physiology or Medicine.Findings:Through manual analysis of all identified outlier papers,the effectiveness of the proposed method for early identifying potential scientific breakthroughs is verified.Research limitations:The study’s applicability has only been empirically tested in the biomedical field.More data from various fields are needed to validate the robustness and generalizability of the method.Practical implications:This study provides a valuable supplement to current methods for research entities early identification of scientific breakthroughs,effectively supporting technological intelligence decision-making and services.Originality/value:The study introduces a novel approach to early identification of scientific breakthroughs by leveraging outlier analysis of research entities,offering a more sensitive,precise,and fine-grained alternative method compared to traditional citation-based evaluations,which enhances the ability to identify nascent breakthrough innovations.展开更多
This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio ind...This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.展开更多
On August 28,salmon industry insiders and consumers shared insights and analysis on the salmon market and consumption at the 7th Global Salmon Industry Development Summit.An important component of the 18th Shanghai In...On August 28,salmon industry insiders and consumers shared insights and analysis on the salmon market and consumption at the 7th Global Salmon Industry Development Summit.An important component of the 18th Shanghai International Fisheries Expo,the event attracted more than100 salmon farming companies from around the globe to exchange views on the current situation and future development of the industry.展开更多
Facing dual challenges of climate change and energy crisis,the global iron and steel industry has been seeking to balance efficiency with energy conservation and environmental protection.Could the realities of blast f...Facing dual challenges of climate change and energy crisis,the global iron and steel industry has been seeking to balance efficiency with energy conservation and environmental protection.Could the realities of blast furnace operation possibly align with low-carbon circular development within China's iron and steel industry?Hydrogen-rich carbon circulating oxygen blast furnace (HyCROF)technology is gaining traction in the Chinese metallurgical industry.展开更多
Familial hypercholesterolemia(FH)is characterized by elevated low-density lipoprotein cholesterol levels due to genetic mutations,presenting with xanthomas,corneal arch,and severe cardiovascular diseases.Early identif...Familial hypercholesterolemia(FH)is characterized by elevated low-density lipoprotein cholesterol levels due to genetic mutations,presenting with xanthomas,corneal arch,and severe cardiovascular diseases.Early identification,diagnosis,and treatment are crucial to prevent severe complications like acute myocardial infarction.Statins are the primary treatment,supplemented by Ezetimibe and proprotein convertase subtilisin/kexin type 9 inhibitors,though their effectiveness can be limited in severe cases.Over 90%of FH cases remain undiagnosed,and current treatments are often inadequate,underscoring the need for improved diagnostic and management systems.Future strategies include advancements in gene testing,precision medicine,and novel drugs,along with gene therapy approaches like AAV-mediated gene therapy and clustered regularly interspaced short palindromic repeats.Lifestyle modifications,including health education,dietary control,and regular exercise,are essential for managing FH and preventing related diseases.Research into FH-related gene mutations,especially LDLR,is critical for accurate diagnosis and effective treatment.展开更多
Increasingly engaged in maritime governance,China has developed its distinct vision and gradually established a complete theoretical system surrounding it.In terms of discourse,China has proposed a collection of conce...Increasingly engaged in maritime governance,China has developed its distinct vision and gradually established a complete theoretical system surrounding it.In terms of discourse,China has proposed a collection of concepts and ideas including a maritime community with a shared future,the 2lst Century Maritime Silk Road,Blue Partnerships,and marine ecological civilization.In terms of connotations,China champions such values as lasting peace,common prosperity,openness and inclusiveness,and cleanness and beautifulness.Exteriorly and interiorly,we can observe the unique character of China's vision concerning maritime governance,which will continue to upgrade and bear fruit in future practices,boosting the development of Chinese maritime governance theories,multilateral maritime cooperation,and ocean-related international legislation.Guided by its vision,China is expected to contribute more to global maritime security and marine ecological civilization.展开更多
Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover chang...Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.展开更多
Earthquake has a significant impact on operation safety of the high speed railway,and for Jakarta-Bandung High Speed Railway(HSR)in Indonesia where it is earthquake-prone,it is necessary to establish an earthquake ear...Earthquake has a significant impact on operation safety of the high speed railway,and for Jakarta-Bandung High Speed Railway(HSR)in Indonesia where it is earthquake-prone,it is necessary to establish an earthquake early warning system to strengthen its earthquake resistance.Based on the principle and technical characteristics of China's high speed railway earthquake early warning system and combining the actual situations of Jakarta-Bandung HSR in Indonesia,this paper describes how to implement China's high speed railway earthquake early warning system in Jakarta-Bandung HSR.It focuses on optimizations in environmental adaptation design and seismic network interface design,earthquake attenuation model parameter adjustment and terminal software interface adjustment,so as to make the system better suit the local situations,and meet operation requirements and guarantee safe operation of Jakarta-Bandung HSR.展开更多
Objective To analyze the characteristics of breakthrough therapy designation(BTD)and its implementation in China,and to provide reference for the optimization of BTD system.Methods A comparative research method was us...Objective To analyze the characteristics of breakthrough therapy designation(BTD)and its implementation in China,and to provide reference for the optimization of BTD system.Methods A comparative research method was used to study the content and implementation effect of BTD system in China and the relevant policies and implementation of the same procedures of drug regulatory authorities in the United States,Japan and the European Union.Then,the differences in policies and implementation results among these countries were analyzed to provide suggestions for the implementation and optimization of this system in China.Results and Conclusion China’s BTD system is implemented late and a small number of drugs has been approved.At the same time,there are problems such as insufficient guidance and communication from the agency to applicants,a broad application condition,single review mode,and lack of full-time personnel.Both the agencies and the applicants have limited experience due to the short implementation time of BTD system in China.There are still some problems despite we have learned a lot from the experience of other drug regulatory agencies.Therefore,based on our national conditions,we should strengthen the guidance of evaluation agency to applicants,optimize the eligibility criteria of BTD system,introduce the rolling review,and increase the number of professional liaisons,which can accelerate the development and marketing process of drugs with obvious clinical value,and finally to address unmet medical need.展开更多
The breakthrough of key core technology is a theoretical and practical strategic issue to realize the rise of the country.This paper analyzes the concept of key core technology and its breakthrough and analyzes its ch...The breakthrough of key core technology is a theoretical and practical strategic issue to realize the rise of the country.This paper analyzes the concept of key core technology and its breakthrough and analyzes its characteristics.Based on the perspective of participants,this paper summarizes the influencing factors of key core technology breakthroughs in enterprises:internal and external enterprises,universities and scientific research institutions,and government.This paper expands the relevant research on key core technology breakthroughs and provides inspiration for enterprises to carry out key core technology research and breakthrough practices.展开更多
Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become...Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become an important part of oil and gas exploration there.Through years of comprehensive geological research in China's sea area,it has been revealed that it has undergone multiple occurrences of tectonic opening and closing movements in varying degrees in the Paleogene,forming 26 Cenozoic sedimentary basins of various types,such as active continental margin,passive continental margin,transitional continental margin and drift rift basins.In the present study,it is observed for the first time that coal type source rocks are mainly developed in 14 continental margin basins in China's sea area,revealing that a very large C-shaped coal-bearing basin group developed there in the Cenozoic.Next,based on the coupling analysis of paleoclimate,paleobotany,paleogeography and paleostructure,it is observed that there are five coal-forming periods in China's sea area,namely the Paleocene,Eocene,early Oligocene,late Oligocene and Miocene-Pliocene,and the coal-forming age is gradually new from north to south.It is also found that the coal seams in the sea area are mainly developed in three coal-forming environments in Cenozoic,namely delta,fan delta and tidal flat-lagoon.The coal seams developed in different environments are characterized by thin thickness,many layers and poor stability.However,the coal-bearing series source rocks in China's sea area have a wide distribution range,very high thickness and large amount,thus forming a material basis for the formation of rich coal type oil and gas.展开更多
Fractures play a pivotal role in carbonate thermal storage systems,serving as primary hydraulic conductivity channels that significantly influence thermal breakthrough times and heat extraction efficiency in geotherma...Fractures play a pivotal role in carbonate thermal storage systems,serving as primary hydraulic conductivity channels that significantly influence thermal breakthrough times and heat extraction efficiency in geothermal-to-well systems.Their impact is critical for well placement and system life prediction.This paper focuses on a geothermal-to-well system within the carbonate reservoir of the Wumishan formation in the Rongcheng geothermal field,Xiong'an new area.It employs a combination of field tests and numerical simulations to determine the permeability of the reservoir and the evolution of fractures between wells.It also examines the influence of fracture width and roughness coefficient on the seepage and temperature fields under various injection scenarios and predicts thermal breakthrough times for production wells.The results show:Higher permeability is observed near well D16 compared to well D22 within the studied geothermal-to-well systems.Wider fractures between wells result in faster temperature decline in production wells.Lower injection flow rates lead to slower temperature reduction in injection wells.The use of roughness coefficients minimizes temperature variations in production wells.This study not only offers guidance for the development and utilization of the geothermal well system,but also contributes to a deeper understanding of the groundwater seepage and heat transfer process influenced by fractures.展开更多
In his report to the 17th Congress of the Communist Party of China, General Secretary Hu Jintao noted that the five years since the previous CPC National Congress havewitnessed important progresses in China's reform ...In his report to the 17th Congress of the Communist Party of China, General Secretary Hu Jintao noted that the five years since the previous CPC National Congress havewitnessed important progresses in China's reform and opening-up undertakings and in the national endeavor to build a society of relative prosperity in all respects. These five years, he said, has also seen a "sound development of (China's) human rights cause." For the first time in its history, the CPC reviewed the development of the human rights cause as an important part of national development.展开更多
Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results...Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results,we present numerical simulations on CO_(2)breakthrough pressure in unsaturated low-permeability rock under 9 multiple P-T conditions(which can keep CO_(2)in gaseous,liquid and supercritical states)and thus,a numerical method which can be used to accurately predict CO_(2)breakthrough pressure on rock-core scale is proposed.The simulation results show that CO_(2)breakthrough pressure and breakthrough time are exponential correlated with P-T conditions.Meanwhile,pressure has stronger effects on experimental results than that of temperature.Moreover,we performed sensitivity studies on the pore distribution indexλ(0.6,0.7,0.8,and 0.9)in van Genuchten-Muale model.Results show that with the increase ofλ,CO_(2)breakthrough pressure and breakthrough time both show decreasing trends.In other words,the larger the value ofλis,the better the permeability of the caprock is,and the worse the CO_(2)sealing capacity is.The numerical method established in this study can provide an important reference for the prediction of gas breakthrough pressure on rock-core scale and for related numerical studies.展开更多
Data announced by the Chinese Ministry of Land and Resources in 2015 suggest that China has discovered more than 480 manganese ore-producing areas, with manganese ore resource reserves up to 1.22 billion tons, includi...Data announced by the Chinese Ministry of Land and Resources in 2015 suggest that China has discovered more than 480 manganese ore-producing areas, with manganese ore resource reserves up to 1.22 billion tons, including 0.303 billion tons of basic reserves and 0.915 billion tons amount of resource. Among these reserves, manganese carbonate ores account for 56%, manganese oxide ores (including spongy manganese ores) accounts for 25%, and other types of manganese ore occupy 19%. Rich ores with 〉30% manganese content only account for 5% of the total resource amount, and the remaining 95% are poor manganese ores. Since 1983 when China first began to import, the imported manganese ores have increased annually by 25%. In 2001, the annual imported manganese ores reached 1.71 million tons. From 2010, the annual imported manganese ores increased by greater than 45%, reaching up to 12 million tons in 2015. Thus it seemed that the shortage of manganese ore resources will be a longterm phenomenon for China's economic development.展开更多
It is learned from the 2013 Summit Forum on Strategic Development of Coal-to-Natural Gas in China that the China Sedin Engineering Company,Ltd.has developed with independent intellectual property rights two experiment...It is learned from the 2013 Summit Forum on Strategic Development of Coal-to-Natural Gas in China that the China Sedin Engineering Company,Ltd.has developed with independent intellectual property rights two experimental furnaces for pressurized gasification of crushed coal,5 m展开更多
Separation technology of rare earth elements (REEs), as the critical step in the separation process, had long been fraught with technical difficulty. A research project conducted by Baotou Shibo Rare Earth Extracti...Separation technology of rare earth elements (REEs), as the critical step in the separation process, had long been fraught with technical difficulty. A research project conducted by Baotou Shibo Rare Earth Extraction & Equipment Co. Ltd., Baotou REE Research Institute, and Baotou Steel & REE Group Hi-Tech Co. Ltd (Inner Mongolia), has successfully solved the problem using a centrifugal extractor and advanced techniques to achieve a key breakthrough.展开更多
A new cotton transformation method was developed by Ge and colleagues at Institute of Cotton Research of Chinese Academy of Agricultural Sciences,and this work was published in a recent issue of the Journal of Integra...A new cotton transformation method was developed by Ge and colleagues at Institute of Cotton Research of Chinese Academy of Agricultural Sciences,and this work was published in a recent issue of the Journal of Integrative Plant Biology(Ge et al.2023;https://doi.org/10.1111/jipb.13427).This method is a milestone progress in the development of cotton transformation technologies,as it can be used to transform different genotypes and species of cotton such as Gossypium hirsutum,Gossypium barbadense,and Gossypium arboreum.This method is fast,user friendly,and the transformation efficiency is equivalent to or superior to other cotton transformation methods.展开更多
文摘Cotton(Gossypium spp.)is a pivotal crop in the global textile industry,providing essential natural fibers.Additionally,cottonseed offers significant value as a source of oil and as feed for livestock(Huang et al.2021;Wen et al.2023).The sector,dependent on cotton,features a comprehensive value chain extending from the processing of fibers to the production of finished textiles,and it employs tens of millions of individuals(Dorward et al.1970).
文摘On March 3,2024,the prototype permeability logging instrument independently developed in China successfully completed its first downhole test in Ren 91 standard well in PetroChina Huabei Oilfield.In the open hole section at a depth of 3925 metres and at a temperature of 148℃,the device collected high-quality permeability logging data.This marks a key technological breakthrough from 0 to 1 in permeability logging,and lays the foundation for the next step in developing a complete set of permeability logging equipment.
基金supported by the major project of the National Social Science Foundation of China“Big Data-driven Semantic Evaluation System of Science and Technology Literature”(Grant No.21&ZD329)。
文摘Purpose:To address the“anomalies”that occur when scientific breakthroughs emerge,this study focuses on identifying early signs and nascent stages of breakthrough innovations from the perspective of outliers,aiming to achieve early identification of scientific breakthroughs in papers.Design/methodology/approach:This study utilizes semantic technology to extract research entities from the titles and abstracts of papers to represent each paper’s research content.Outlier detection methods are then employed to measure and analyze the anomalies in breakthrough papers during their early stages.The development and evolution process are traced using literature time tags.Finally,a case study is conducted using the key publications of the 2021 Nobel Prize laureates in Physiology or Medicine.Findings:Through manual analysis of all identified outlier papers,the effectiveness of the proposed method for early identifying potential scientific breakthroughs is verified.Research limitations:The study’s applicability has only been empirically tested in the biomedical field.More data from various fields are needed to validate the robustness and generalizability of the method.Practical implications:This study provides a valuable supplement to current methods for research entities early identification of scientific breakthroughs,effectively supporting technological intelligence decision-making and services.Originality/value:The study introduces a novel approach to early identification of scientific breakthroughs by leveraging outlier analysis of research entities,offering a more sensitive,precise,and fine-grained alternative method compared to traditional citation-based evaluations,which enhances the ability to identify nascent breakthrough innovations.
基金financial support from the China Postdoctoral Science Foundation project(No.2023M733253)。
文摘This paper attempts to explore the decoupling relationship and its drivers between industrial economic increase and energy-related CO_(2) emissions(ICE). Firstly, the decoupling relationship was evaluated by Tapio index. Then, based on the DEA meta-frontier theory framework which taking into account the regional and industrial heterogeneity and index decomposition method, the driving factors of decoupling process were explored mainly from the view of technology and efficiency. The results show that during2000-2019, weak decoupling was the primary state. Investment scale expansion was the largest reason hindering decoupling process of industrial increase from ICE. Both energy saving and production technology achieved significant progress, which facilitated the decoupling process. Simultaneously, the energy technology gap and production technology gap among regions have been narrowed, and played a role in promoting decoupling process. On the contrary, both scale economy efficiency and pure technical efficiency have inhibiting effects on decoupling process. The former indicates that the scale economy of China's industry was not conducive to improve energy efficiency and production efficiency, while the latter indicates that resource misallocation problem may exist in both energy market and product market.
文摘On August 28,salmon industry insiders and consumers shared insights and analysis on the salmon market and consumption at the 7th Global Salmon Industry Development Summit.An important component of the 18th Shanghai International Fisheries Expo,the event attracted more than100 salmon farming companies from around the globe to exchange views on the current situation and future development of the industry.
文摘Facing dual challenges of climate change and energy crisis,the global iron and steel industry has been seeking to balance efficiency with energy conservation and environmental protection.Could the realities of blast furnace operation possibly align with low-carbon circular development within China's iron and steel industry?Hydrogen-rich carbon circulating oxygen blast furnace (HyCROF)technology is gaining traction in the Chinese metallurgical industry.
基金Supported by National Key Research and Development Program of China,No.2022YFE0209900.
文摘Familial hypercholesterolemia(FH)is characterized by elevated low-density lipoprotein cholesterol levels due to genetic mutations,presenting with xanthomas,corneal arch,and severe cardiovascular diseases.Early identification,diagnosis,and treatment are crucial to prevent severe complications like acute myocardial infarction.Statins are the primary treatment,supplemented by Ezetimibe and proprotein convertase subtilisin/kexin type 9 inhibitors,though their effectiveness can be limited in severe cases.Over 90%of FH cases remain undiagnosed,and current treatments are often inadequate,underscoring the need for improved diagnostic and management systems.Future strategies include advancements in gene testing,precision medicine,and novel drugs,along with gene therapy approaches like AAV-mediated gene therapy and clustered regularly interspaced short palindromic repeats.Lifestyle modifications,including health education,dietary control,and regular exercise,are essential for managing FH and preventing related diseases.Research into FH-related gene mutations,especially LDLR,is critical for accurate diagnosis and effective treatment.
基金the phased result of a key research project supported by the National Social Science Fund of China(22VHQ010).
文摘Increasingly engaged in maritime governance,China has developed its distinct vision and gradually established a complete theoretical system surrounding it.In terms of discourse,China has proposed a collection of concepts and ideas including a maritime community with a shared future,the 2lst Century Maritime Silk Road,Blue Partnerships,and marine ecological civilization.In terms of connotations,China champions such values as lasting peace,common prosperity,openness and inclusiveness,and cleanness and beautifulness.Exteriorly and interiorly,we can observe the unique character of China's vision concerning maritime governance,which will continue to upgrade and bear fruit in future practices,boosting the development of Chinese maritime governance theories,multilateral maritime cooperation,and ocean-related international legislation.Guided by its vision,China is expected to contribute more to global maritime security and marine ecological civilization.
基金Under the auspices of National Natural Science Foundation of China (No.42176221,41901133)Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA19060205)Seed project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YIC-E3518907)。
文摘Increased human activities in China's coastal zone have resulted in the depletion of ecological land resources.Thus,conducting current and future multi-scenario simulation research on land use and land cover change(LUCC)is crucial for guiding the healthy and sustainable development of coastal zones.System dynamic(SD)-future land use simulation(FLUS)model,a coupled simulation model,was developed to analyze land use dynamics in China's coastal zone.This model encompasses five scenarios,namely,SSP1-RCP2.6(A),SSP2-RCP4.5(B),SSP3-RCP4.5(C),SSP4-RCP4.5(D),and SSP5-RCP8.5(E).The SD model simulates land use demand on an annual basis up to the year 2100.Subsequently,the FLUS model determines the spatial distribution of land use for the near term(2035),medium term(2050),and long term(2100).Results reveal a slowing trend in land use changes in China's coastal zone from 2000–2020.Among these changes,the expansion rate of construction land was the highest and exhibited an annual decrease.By 2100,land use predictions exhibit high accuracy,and notable differences are observed in trends across scenarios.In summary,the expansion of production,living,and ecological spaces toward the sea remains prominent.Scenario A emphasizes reduced land resource dependence,benefiting ecological land protection.Scenario B witnesses an intensified expansion of artificial wetlands.Scenario C sees substantial land needs for living and production,while Scenario D shows coastal forest and grassland shrinkage.Lastly,in Scenario E,the conflict between humans and land intensifies.This study presents pertinent recommendations for the future development,utilization,and management of coastal areas in China.The research contributes valuable scientific support for informed,long-term strategic decision making within coastal regions.
文摘Earthquake has a significant impact on operation safety of the high speed railway,and for Jakarta-Bandung High Speed Railway(HSR)in Indonesia where it is earthquake-prone,it is necessary to establish an earthquake early warning system to strengthen its earthquake resistance.Based on the principle and technical characteristics of China's high speed railway earthquake early warning system and combining the actual situations of Jakarta-Bandung HSR in Indonesia,this paper describes how to implement China's high speed railway earthquake early warning system in Jakarta-Bandung HSR.It focuses on optimizations in environmental adaptation design and seismic network interface design,earthquake attenuation model parameter adjustment and terminal software interface adjustment,so as to make the system better suit the local situations,and meet operation requirements and guarantee safe operation of Jakarta-Bandung HSR.
基金Special Fund for Academy of Pharmaceutical Regulatory Sciences of Research Base for Drug Regulatory Science of National Medical Products Administration-Shenyang Pharmaceutical University(2021jgkx004).
文摘Objective To analyze the characteristics of breakthrough therapy designation(BTD)and its implementation in China,and to provide reference for the optimization of BTD system.Methods A comparative research method was used to study the content and implementation effect of BTD system in China and the relevant policies and implementation of the same procedures of drug regulatory authorities in the United States,Japan and the European Union.Then,the differences in policies and implementation results among these countries were analyzed to provide suggestions for the implementation and optimization of this system in China.Results and Conclusion China’s BTD system is implemented late and a small number of drugs has been approved.At the same time,there are problems such as insufficient guidance and communication from the agency to applicants,a broad application condition,single review mode,and lack of full-time personnel.Both the agencies and the applicants have limited experience due to the short implementation time of BTD system in China.There are still some problems despite we have learned a lot from the experience of other drug regulatory agencies.Therefore,based on our national conditions,we should strengthen the guidance of evaluation agency to applicants,optimize the eligibility criteria of BTD system,introduce the rolling review,and increase the number of professional liaisons,which can accelerate the development and marketing process of drugs with obvious clinical value,and finally to address unmet medical need.
文摘The breakthrough of key core technology is a theoretical and practical strategic issue to realize the rise of the country.This paper analyzes the concept of key core technology and its breakthrough and analyzes its characteristics.Based on the perspective of participants,this paper summarizes the influencing factors of key core technology breakthroughs in enterprises:internal and external enterprises,universities and scientific research institutions,and government.This paper expands the relevant research on key core technology breakthroughs and provides inspiration for enterprises to carry out key core technology research and breakthrough practices.
基金The Ministry of Land and Resources Project of Oil and Gas Resource Investigation and Evaluation under contract Nos XQ-2004-05 and XQ-2007-05the National Key Basic Research Program of China(973 Program)under contract No.2009CB219400+3 种基金the National Science and Technology Major Project under contract Nos 2008ZX05025,2011ZX05025 and2016ZX05026the National Natural Science Foundation under contract Nos 41872172 and 42072188the Research and Innovation Team Support Program of Shandong University of Science and Technology under contract No.2018TDJH101Hebei Provincial Resources Survey and Research Laboratory Open Foundation。
文摘Sea area is an important area of oil and gas exploration in China.It has been found that China's sea area mainly consists of coal type oil and gas,and the exploration of coal-bearing series source rocks has become an important part of oil and gas exploration there.Through years of comprehensive geological research in China's sea area,it has been revealed that it has undergone multiple occurrences of tectonic opening and closing movements in varying degrees in the Paleogene,forming 26 Cenozoic sedimentary basins of various types,such as active continental margin,passive continental margin,transitional continental margin and drift rift basins.In the present study,it is observed for the first time that coal type source rocks are mainly developed in 14 continental margin basins in China's sea area,revealing that a very large C-shaped coal-bearing basin group developed there in the Cenozoic.Next,based on the coupling analysis of paleoclimate,paleobotany,paleogeography and paleostructure,it is observed that there are five coal-forming periods in China's sea area,namely the Paleocene,Eocene,early Oligocene,late Oligocene and Miocene-Pliocene,and the coal-forming age is gradually new from north to south.It is also found that the coal seams in the sea area are mainly developed in three coal-forming environments in Cenozoic,namely delta,fan delta and tidal flat-lagoon.The coal seams developed in different environments are characterized by thin thickness,many layers and poor stability.However,the coal-bearing series source rocks in China's sea area have a wide distribution range,very high thickness and large amount,thus forming a material basis for the formation of rich coal type oil and gas.
基金supported by basic research project of Chinese Academy of Geological Sciences(No.YK202309).Special thanks are due to the reviewers and editors of this journal for their valuable suggestions and revisions of the manuscript.
文摘Fractures play a pivotal role in carbonate thermal storage systems,serving as primary hydraulic conductivity channels that significantly influence thermal breakthrough times and heat extraction efficiency in geothermal-to-well systems.Their impact is critical for well placement and system life prediction.This paper focuses on a geothermal-to-well system within the carbonate reservoir of the Wumishan formation in the Rongcheng geothermal field,Xiong'an new area.It employs a combination of field tests and numerical simulations to determine the permeability of the reservoir and the evolution of fractures between wells.It also examines the influence of fracture width and roughness coefficient on the seepage and temperature fields under various injection scenarios and predicts thermal breakthrough times for production wells.The results show:Higher permeability is observed near well D16 compared to well D22 within the studied geothermal-to-well systems.Wider fractures between wells result in faster temperature decline in production wells.Lower injection flow rates lead to slower temperature reduction in injection wells.The use of roughness coefficients minimizes temperature variations in production wells.This study not only offers guidance for the development and utilization of the geothermal well system,but also contributes to a deeper understanding of the groundwater seepage and heat transfer process influenced by fractures.
文摘In his report to the 17th Congress of the Communist Party of China, General Secretary Hu Jintao noted that the five years since the previous CPC National Congress havewitnessed important progresses in China's reform and opening-up undertakings and in the national endeavor to build a society of relative prosperity in all respects. These five years, he said, has also seen a "sound development of (China's) human rights cause." For the first time in its history, the CPC reviewed the development of the human rights cause as an important part of national development.
基金supported by Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021010)funded by the National Natural Science Foundation of China(Grant No.41702251 and 42141010)the MOE Key Laboratory of Groundwater Circulation and Environmental Evolution。
文摘Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results,we present numerical simulations on CO_(2)breakthrough pressure in unsaturated low-permeability rock under 9 multiple P-T conditions(which can keep CO_(2)in gaseous,liquid and supercritical states)and thus,a numerical method which can be used to accurately predict CO_(2)breakthrough pressure on rock-core scale is proposed.The simulation results show that CO_(2)breakthrough pressure and breakthrough time are exponential correlated with P-T conditions.Meanwhile,pressure has stronger effects on experimental results than that of temperature.Moreover,we performed sensitivity studies on the pore distribution indexλ(0.6,0.7,0.8,and 0.9)in van Genuchten-Muale model.Results show that with the increase ofλ,CO_(2)breakthrough pressure and breakthrough time both show decreasing trends.In other words,the larger the value ofλis,the better the permeability of the caprock is,and the worse the CO_(2)sealing capacity is.The numerical method established in this study can provide an important reference for the prediction of gas breakthrough pressure on rock-core scale and for related numerical studies.
文摘Data announced by the Chinese Ministry of Land and Resources in 2015 suggest that China has discovered more than 480 manganese ore-producing areas, with manganese ore resource reserves up to 1.22 billion tons, including 0.303 billion tons of basic reserves and 0.915 billion tons amount of resource. Among these reserves, manganese carbonate ores account for 56%, manganese oxide ores (including spongy manganese ores) accounts for 25%, and other types of manganese ore occupy 19%. Rich ores with 〉30% manganese content only account for 5% of the total resource amount, and the remaining 95% are poor manganese ores. Since 1983 when China first began to import, the imported manganese ores have increased annually by 25%. In 2001, the annual imported manganese ores reached 1.71 million tons. From 2010, the annual imported manganese ores increased by greater than 45%, reaching up to 12 million tons in 2015. Thus it seemed that the shortage of manganese ore resources will be a longterm phenomenon for China's economic development.
文摘It is learned from the 2013 Summit Forum on Strategic Development of Coal-to-Natural Gas in China that the China Sedin Engineering Company,Ltd.has developed with independent intellectual property rights two experimental furnaces for pressurized gasification of crushed coal,5 m
文摘Separation technology of rare earth elements (REEs), as the critical step in the separation process, had long been fraught with technical difficulty. A research project conducted by Baotou Shibo Rare Earth Extraction & Equipment Co. Ltd., Baotou REE Research Institute, and Baotou Steel & REE Group Hi-Tech Co. Ltd (Inner Mongolia), has successfully solved the problem using a centrifugal extractor and advanced techniques to achieve a key breakthrough.
文摘A new cotton transformation method was developed by Ge and colleagues at Institute of Cotton Research of Chinese Academy of Agricultural Sciences,and this work was published in a recent issue of the Journal of Integrative Plant Biology(Ge et al.2023;https://doi.org/10.1111/jipb.13427).This method is a milestone progress in the development of cotton transformation technologies,as it can be used to transform different genotypes and species of cotton such as Gossypium hirsutum,Gossypium barbadense,and Gossypium arboreum.This method is fast,user friendly,and the transformation efficiency is equivalent to or superior to other cotton transformation methods.