Taking agricultural organization in China's southwestern mountainous regions as research object,on the basis of analysis of the status quo of agricultural organization development in China's southwestern mount...Taking agricultural organization in China's southwestern mountainous regions as research object,on the basis of analysis of the status quo of agricultural organization development in China's southwestern mountainous regions,we use related theoretical knowledge on economics and organization science,we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China's southwestern mountainous regions over the past 30 years.Finally we draw several general conclusions regarding structure innovation of agricultural organization in China's southwestern mountainous regions as follows:first,the structure innovation of agricultural organization,a gradual process,proceeds ceaselessly along with ongoing progress and development of agriculture,and in this process,farmers always play a fundamental role;second,the structure innovation of agricultural organization is affected by many factors,and government institutional arrangement and change in market conditions is undoubtedly the most critical factor;third,the probable evolving direction of structure innovation of agricultural organization includes internal differentiation of the same form of agricultural organization,association of different forms of agricultural organization,and emergence of other forms of agricultural organization.展开更多
Mining activities have created huge uncovered slopes, large areas of gangue ground and extensive tailings dams. This paper presents the environmental geochemistry of mining activities in Panzhihua region. The selected...Mining activities have created huge uncovered slopes, large areas of gangue ground and extensive tailings dams. This paper presents the environmental geochemistry of mining activities in Panzhihua region. The selected elements (Ti, V, Mo. Ni. Pb. Cu) show similar distribution patterns of concentration anomaly in topsoil. These concentration anomalies are located in V-Ti-magnetite slope, gangues dam and coal mine. The distinction between anthropogenic contamination and natural background is made available by the use of the enrichment factor in this study area. The anomalies of EF were smaller than that of concentration. The results from EF show that the selected elements anthropogenic pollution (EF>1) in topsoil were located in both the coal mining area and the V-Ti-magnetite mining area. In addition, the pollution sources of selected elements came from V-Ti-magnetite, slag, gangues, coal and other pollutants from mining activities.展开更多
Labor migration to urban centers is a common phenomenon in the Panxi region of the southwestern mountainous region of China, mainly owing to inadequate livelihood capital in rural areas. Numerous studies have been con...Labor migration to urban centers is a common phenomenon in the Panxi region of the southwestern mountainous region of China, mainly owing to inadequate livelihood capital in rural areas. Numerous studies have been conducted to explore the relationship between labor migration and its causes, such as individual and family characteristics, but few studies have focused on livelihood capital. This paper examines the impact factors on labor migration employment location selection and duration from a household livelihood capital perspective. A case study of 279 households from 10 villages in the area was carried out in February 2016. We used both qualitative and quantitative methods to analyze the data. On the basis of the 279 questionnaires, the proportion of households with non-labor migration is 48.4%, whereas households with labor migration within a local city and migration across regions account for 28.7% and 22.9%, respectively. Social, financial, and human capitals are the primary factors that influence migrants' employment location choice positively. Among them, social capital has a significant impact on both migration within a local city and across regions; each of the regression coefficients is 1.111 and 1.183. Social, human, and financial capitals also have a positive impact on the duration of labor migration, and similarly, social capital is the highest coefficient with 2.489. However, physical capital only partly impacts labor migration across regions, whereas the impact of labor migration within a local city, and the duration, are not significant. Furthermore, the impact of household natural capital on migration space and time are all negative relationships, especially for labor migration across the regions and duration, with coefficient scores of 4.836 and 3.450, respectively. That is to say, a laborer is inclined to migrate within a local city for a short term, or not migrate at all, if natural capital is abundant. Our analysis results show that household livelihood capital has a strong spatio-temporal impact on labor migration.展开更多
In this paper,the rainfall features in southwestern China are studied using daily rainfall station data.The rainfall features are distinct along the eastern and western edges of the Hengduan Mountains and over the mou...In this paper,the rainfall features in southwestern China are studied using daily rainfall station data.The rainfall features are distinct along the eastern and western edges of the Hengduan Mountains and over the mountains,especially in terms of rainfall frequency.The rainfall amounts and frequencies are much higher along the eastern and western edges than over the mountains,particularly during spring,which is partly contributed by the number and duration of rainfall events.The differences are more obvious in the nocturnal rainfall than in the daytime rainfall.The rainfall differences over the three regions could be affected by the large-scale environment.By analyzing reanalysis data,the large-scale circulations linked to the different rainfall features over southwestern China,and the interactions of these circulations with the topography are also discussed.展开更多
The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and break...The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).展开更多
Deeply influenced by karst geological environment, the structure of the soil ecosystem in the southwest karst area of China is characterized by strong vertical variation and space variation, structural feature of nonr...Deeply influenced by karst geological environment, the structure of the soil ecosystem in the southwest karst area of China is characterized by strong vertical variation and space variation, structural feature of nonrenewable soil, and functional feature of poor circulation of nutrient elements and limited vegetation growth. On the basis of analyzing vulnerability in structure and function of soil ecosystem in China's southwestern karst regions, we discussed the degradation process and mechanism of soil structure, nutrient, water and microorganism in the course of soil erosion from the perspective of material and energy cycle. Finally, we put forward some recommendations for recovery of degraded soil, transformation and rational utilization of soil.展开更多
The Eglab-Yetti region of southwestern Algeria is a main part of the Reguibat shield of the West African craton(WAC)which consists of Archean to Paleoprotzrozoic basement.The region hosts numerous
Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the fre...Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the frequent occurrence of abiotic stress conditions such as drought, heat, cold, wet shaded stress have severely affected the development of maize production, causing low and unstable corn yields, severely restricting the maize industry development in the southwest of China. This paper preliminarily describes the maize resistance to abiotic stresses in southwestem region of China, putting forward the countermeasures and the key research direction in the practice of breeding in order to provide reference for the cultivation of new varieties with high yield and stress resistance, and improving the levels of maize stress resistance breeding in southwestern region of China.展开更多
The longitudinal range-gorge region (LRGR) in Southwestern China, characterized by longitudinal mountain ranges and deep valleys, includes the basins of four major international rivers: the Yuanjiang-Red, Lancang Meko...The longitudinal range-gorge region (LRGR) in Southwestern China, characterized by longitudinal mountain ranges and deep valleys, includes the basins of four major international rivers: the Yuanjiang-Red, Lancang Mekong, Nujiang Salween and Irrawaddy. This region is classified as one of the world’s biodiversity hotspots, and provides an important ecological and economic corridor linking China and Southeast Asian countries. Over the past half century, it has served as a resource base for timber and minerals needed to fuel economic development, which resulted in rapid and drastic changes in ecosystem and species diversity. Proposed and ongoing development programs, such as China’s Great Western Development campaign, Greater Mekong Subregional Economic Cooperation (GMS) and China-ASEAN free trade zone development (“10+1”), threaten to bring unprecedented disturbance to the region’s ecosystems. Present and emerging threats to eco-security have caught tremendous attention worldwide. Therefore, studies on such problems are critical for enhancing ecosystem health and transboundary eco-security. This paper indicates several multi-disciplinary and cross-sector studies on transboundary resources in this region that will meet three major national needs: 1) identifying core scientific issues of ecological development and infrastructure construction in highplateau and mountainous areas for the Western Development campaign; 2) developing maintenance mechanisms and control methodologies for transboundary eco-security and resource base development; 3) providing scientific grounds for multi-lateral diplomacy, trade and economic cooperation, and conflict resolution as part of China’s opening-up to south Asia. The key subjects to be solved include dynamics and major drive forces of this area, ecological effects caused by major projects construction, and transboundary eco-security and its controlling. The research projects proposed in this article will develop theories on ecosystem change and transboundary eco-security, and provide a scientific basis for national and international development strategies.展开更多
Permian system is one of the best developed systems in Sanjiang area. In Yidun\|Zhongdian and in Zhiso\|Muli, The Lower Permian is clastics\|carbonates\|volcanics with interbeds of siliceous sediments, Whereas the Upp...Permian system is one of the best developed systems in Sanjiang area. In Yidun\|Zhongdian and in Zhiso\|Muli, The Lower Permian is clastics\|carbonates\|volcanics with interbeds of siliceous sediments, Whereas the Upper Permian is composed of lower part of basic volcanics and upper part of clastics\|carbonates with a total thickness of 1000~4000 meters .In Zhongzha (Batang)\|Jingping region, It is mainly carbonates of 217~1320 meters thick, But in Jingping proper, there occur about 5000 meters thick basalts of early late Permian . From Batang to Benzinan along the Jinshajiang river , the lower Permian is clastics\|volcanics\|carbonates formation with interbeds of siliceous sediments and spilite formation; Whereas the Upper Permian is clastics with volcanic interbeds; The total thickness being 3700 to 7100 meters. In Jiangda—Mangco (Mangkang), It is clastic\|carbonate\|volcanic formation of 1100 to 2400 meters . In Tuoba (Qamdo)—Haitong (Mankang)—Ximi (Mujiang ), It is mainly clastics\|carbonates formation , the Upper Permian being coal\|bearing clastics sequence and the total thickness being 700~2500 meters ,In Zhado—Zhasuosuo (Mangkang)—Deqing—Qinggu—Qinghong, It is clastic\|carbonate\|volcanic formation, locally with coal\|bearing clastics of Upper Permian and the total thickness of mainly carbonate formation and clastic formation with coal\|bearing clastic formation of Uppermian, is 800 to 2000 meters. In the whole area , the Permian strata were slightly metamorphosed, locally more intensively metamorphosed up to amphibolite facies. The fossils found belong to fusulinids, coral, brachiopods,ammonite,bivalve, gastropods, bryozoa,foraminifera, trilobite, algae ,porifera (sponge), and continental plant . Besides the Gondwana cold\|water type components of brachiopods found in Baoshan, the fossils belong mainly to Cathaysian biota, especially to South China type. In some places such as Mangkang, Guxue (Dewong), to South China type. In some places such as Mangkang, Guxue (Dewong), and Wachang (Muli), the resedimented Late Carboniferous fusulinid fossils can be found in the clastic limestone of Lower Permian, and the Early Permian or even Middle to Late Carboniferous fusulinid fossils found in Upper Permian classic limestone. All these suggest the resedimentation of biolimestone blocks or fragments related to fault\|volcanism .On the section of Tongba (Muli), the permian is continuous graded upwards into the Triassic, with a transitional zone of fossil.展开更多
基金Supported by the 2010 Planning Project in Research Center of Development Ability of the West Regions in China (XNSDX01-003)Graduates Innovation Foundation in Guizhou University (2011045)The 2010 Research Project in Development Strategy Research Center in Karst Regions (KSTX01-002)
文摘Taking agricultural organization in China's southwestern mountainous regions as research object,on the basis of analysis of the status quo of agricultural organization development in China's southwestern mountainous regions,we use related theoretical knowledge on economics and organization science,we probe into the process of innovation and mechanism of action concerning the structure of agricultural organization in China's southwestern mountainous regions over the past 30 years.Finally we draw several general conclusions regarding structure innovation of agricultural organization in China's southwestern mountainous regions as follows:first,the structure innovation of agricultural organization,a gradual process,proceeds ceaselessly along with ongoing progress and development of agriculture,and in this process,farmers always play a fundamental role;second,the structure innovation of agricultural organization is affected by many factors,and government institutional arrangement and change in market conditions is undoubtedly the most critical factor;third,the probable evolving direction of structure innovation of agricultural organization includes internal differentiation of the same form of agricultural organization,association of different forms of agricultural organization,and emergence of other forms of agricultural organization.
基金This paper is supported by Youth Scientific Technological Fund of Sichuan Province.
文摘Mining activities have created huge uncovered slopes, large areas of gangue ground and extensive tailings dams. This paper presents the environmental geochemistry of mining activities in Panzhihua region. The selected elements (Ti, V, Mo. Ni. Pb. Cu) show similar distribution patterns of concentration anomaly in topsoil. These concentration anomalies are located in V-Ti-magnetite slope, gangues dam and coal mine. The distinction between anthropogenic contamination and natural background is made available by the use of the enrichment factor in this study area. The anomalies of EF were smaller than that of concentration. The results from EF show that the selected elements anthropogenic pollution (EF>1) in topsoil were located in both the coal mining area and the V-Ti-magnetite mining area. In addition, the pollution sources of selected elements came from V-Ti-magnetite, slag, gangues, coal and other pollutants from mining activities.
基金Under the auspices of the National Natural Science Foundation of China(No.41471469,41601141)the National Key Basic Research Program of China(No.2015CB452706)+1 种基金the Humanities and Social Sciences Youth Project of Ministry of Education in China(No.14YJCZH130)Youth Talent Team Program of the Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(No.SDSQB-2015-01)
文摘Labor migration to urban centers is a common phenomenon in the Panxi region of the southwestern mountainous region of China, mainly owing to inadequate livelihood capital in rural areas. Numerous studies have been conducted to explore the relationship between labor migration and its causes, such as individual and family characteristics, but few studies have focused on livelihood capital. This paper examines the impact factors on labor migration employment location selection and duration from a household livelihood capital perspective. A case study of 279 households from 10 villages in the area was carried out in February 2016. We used both qualitative and quantitative methods to analyze the data. On the basis of the 279 questionnaires, the proportion of households with non-labor migration is 48.4%, whereas households with labor migration within a local city and migration across regions account for 28.7% and 22.9%, respectively. Social, financial, and human capitals are the primary factors that influence migrants' employment location choice positively. Among them, social capital has a significant impact on both migration within a local city and across regions; each of the regression coefficients is 1.111 and 1.183. Social, human, and financial capitals also have a positive impact on the duration of labor migration, and similarly, social capital is the highest coefficient with 2.489. However, physical capital only partly impacts labor migration across regions, whereas the impact of labor migration within a local city, and the duration, are not significant. Furthermore, the impact of household natural capital on migration space and time are all negative relationships, especially for labor migration across the regions and duration, with coefficient scores of 4.836 and 3.450, respectively. That is to say, a laborer is inclined to migrate within a local city for a short term, or not migrate at all, if natural capital is abundant. Our analysis results show that household livelihood capital has a strong spatio-temporal impact on labor migration.
基金jointly supported by the National Key R&D Program of China [grant number 2018YFC1507603]the National Natural Science Foundation of China [grant number41875112 and 41675075]
文摘In this paper,the rainfall features in southwestern China are studied using daily rainfall station data.The rainfall features are distinct along the eastern and western edges of the Hengduan Mountains and over the mountains,especially in terms of rainfall frequency.The rainfall amounts and frequencies are much higher along the eastern and western edges than over the mountains,particularly during spring,which is partly contributed by the number and duration of rainfall events.The differences are more obvious in the nocturnal rainfall than in the daytime rainfall.The rainfall differences over the three regions could be affected by the large-scale environment.By analyzing reanalysis data,the large-scale circulations linked to the different rainfall features over southwestern China,and the interactions of these circulations with the topography are also discussed.
文摘The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).
基金Supported by National Science and Technology Project(2006BAC01A16 and 2011BAC09B01)Key Natural Science Foundation Project of Chongqing Municipality (CSTC2009BA0002)948 Project of State Bureau of Forestry (2009-4-20)
文摘Deeply influenced by karst geological environment, the structure of the soil ecosystem in the southwest karst area of China is characterized by strong vertical variation and space variation, structural feature of nonrenewable soil, and functional feature of poor circulation of nutrient elements and limited vegetation growth. On the basis of analyzing vulnerability in structure and function of soil ecosystem in China's southwestern karst regions, we discussed the degradation process and mechanism of soil structure, nutrient, water and microorganism in the course of soil erosion from the perspective of material and energy cycle. Finally, we put forward some recommendations for recovery of degraded soil, transformation and rational utilization of soil.
文摘The Eglab-Yetti region of southwestern Algeria is a main part of the Reguibat shield of the West African craton(WAC)which consists of Archean to Paleoprotzrozoic basement.The region hosts numerous
基金Supported by the Corn Heat-resisting Resources Exploitation and Chain Molecular Marker Development(cstc2015jcyj BX0112)the Screening and Breeding of Feeding Maize Varieties in the Hilly and Mountain Areas(cstc2016shms-ztzx80017)+5 种基金the Functional Corn Germplasm Renounces Precise Identification and Material Innovation(cstc-2016shms-ztzx80013)the Breeding of Maize CMS Materials(2013cstc-jbky-00565)the Screening and Creation of High-temperature and Drought Resisting Corn Materials(2013cstc-jbky-00564)the Creation and Application of Shade-tolerant Corn Germplasm(cstc2016shmszx0218)the Special Fund for Scientific and Technological Innovation of Social People’s Livelihood of Chongqing Municipality-Molecular Analysis of Corn Kernel Accumulated Amylose and Development and Application of Genetic Specific Markers(cstc2015shmszx80029)the Innovation of Fine Varieties of Chongqing Academy of Agricultural Sciences-Research and Application of the Combining Ability of High-efficient Retrospective Improved Corn(NKY-2016AB004)~~
文摘Maize is an important food crop, as well as the irreplaceable feed and industrial materials, having huge market demand in China. Southwestern region of China is the third largest main maize producing zone, and the frequent occurrence of abiotic stress conditions such as drought, heat, cold, wet shaded stress have severely affected the development of maize production, causing low and unstable corn yields, severely restricting the maize industry development in the southwest of China. This paper preliminarily describes the maize resistance to abiotic stresses in southwestem region of China, putting forward the countermeasures and the key research direction in the practice of breeding in order to provide reference for the cultivation of new varieties with high yield and stress resistance, and improving the levels of maize stress resistance breeding in southwestern region of China.
文摘The longitudinal range-gorge region (LRGR) in Southwestern China, characterized by longitudinal mountain ranges and deep valleys, includes the basins of four major international rivers: the Yuanjiang-Red, Lancang Mekong, Nujiang Salween and Irrawaddy. This region is classified as one of the world’s biodiversity hotspots, and provides an important ecological and economic corridor linking China and Southeast Asian countries. Over the past half century, it has served as a resource base for timber and minerals needed to fuel economic development, which resulted in rapid and drastic changes in ecosystem and species diversity. Proposed and ongoing development programs, such as China’s Great Western Development campaign, Greater Mekong Subregional Economic Cooperation (GMS) and China-ASEAN free trade zone development (“10+1”), threaten to bring unprecedented disturbance to the region’s ecosystems. Present and emerging threats to eco-security have caught tremendous attention worldwide. Therefore, studies on such problems are critical for enhancing ecosystem health and transboundary eco-security. This paper indicates several multi-disciplinary and cross-sector studies on transboundary resources in this region that will meet three major national needs: 1) identifying core scientific issues of ecological development and infrastructure construction in highplateau and mountainous areas for the Western Development campaign; 2) developing maintenance mechanisms and control methodologies for transboundary eco-security and resource base development; 3) providing scientific grounds for multi-lateral diplomacy, trade and economic cooperation, and conflict resolution as part of China’s opening-up to south Asia. The key subjects to be solved include dynamics and major drive forces of this area, ecological effects caused by major projects construction, and transboundary eco-security and its controlling. The research projects proposed in this article will develop theories on ecosystem change and transboundary eco-security, and provide a scientific basis for national and international development strategies.
文摘Permian system is one of the best developed systems in Sanjiang area. In Yidun\|Zhongdian and in Zhiso\|Muli, The Lower Permian is clastics\|carbonates\|volcanics with interbeds of siliceous sediments, Whereas the Upper Permian is composed of lower part of basic volcanics and upper part of clastics\|carbonates with a total thickness of 1000~4000 meters .In Zhongzha (Batang)\|Jingping region, It is mainly carbonates of 217~1320 meters thick, But in Jingping proper, there occur about 5000 meters thick basalts of early late Permian . From Batang to Benzinan along the Jinshajiang river , the lower Permian is clastics\|volcanics\|carbonates formation with interbeds of siliceous sediments and spilite formation; Whereas the Upper Permian is clastics with volcanic interbeds; The total thickness being 3700 to 7100 meters. In Jiangda—Mangco (Mangkang), It is clastic\|carbonate\|volcanic formation of 1100 to 2400 meters . In Tuoba (Qamdo)—Haitong (Mankang)—Ximi (Mujiang ), It is mainly clastics\|carbonates formation , the Upper Permian being coal\|bearing clastics sequence and the total thickness being 700~2500 meters ,In Zhado—Zhasuosuo (Mangkang)—Deqing—Qinggu—Qinghong, It is clastic\|carbonate\|volcanic formation, locally with coal\|bearing clastics of Upper Permian and the total thickness of mainly carbonate formation and clastic formation with coal\|bearing clastic formation of Uppermian, is 800 to 2000 meters. In the whole area , the Permian strata were slightly metamorphosed, locally more intensively metamorphosed up to amphibolite facies. The fossils found belong to fusulinids, coral, brachiopods,ammonite,bivalve, gastropods, bryozoa,foraminifera, trilobite, algae ,porifera (sponge), and continental plant . Besides the Gondwana cold\|water type components of brachiopods found in Baoshan, the fossils belong mainly to Cathaysian biota, especially to South China type. In some places such as Mangkang, Guxue (Dewong), to South China type. In some places such as Mangkang, Guxue (Dewong), and Wachang (Muli), the resedimented Late Carboniferous fusulinid fossils can be found in the clastic limestone of Lower Permian, and the Early Permian or even Middle to Late Carboniferous fusulinid fossils found in Upper Permian classic limestone. All these suggest the resedimentation of biolimestone blocks or fragments related to fault\|volcanism .On the section of Tongba (Muli), the permian is continuous graded upwards into the Triassic, with a transitional zone of fossil.