期刊文献+
共找到5,439篇文章
< 1 2 250 >
每页显示 20 50 100
An Empirical Analysis of the Efficient Market Hypothesis in China's Stock Market
1
作者 Jiaxuan Xu 《Proceedings of Business and Economic Studies》 2021年第3期1-5,共5页
The efficient market hypothesis is one of the most important theories in finance.According to this hypothesis,in a stock market with sound laws,good functions,high transparencies,and extensive competitions,all valuabl... The efficient market hypothesis is one of the most important theories in finance.According to this hypothesis,in a stock market with sound laws,good functions,high transparencies,and extensive competitions,all valuable information is timely,accurately,and fully reflected in the trend of stock prices including the current and future values of enterprises.Unless there are market manipulations,it would be impossible for investors to gain more above the average profits in the market by analyzing former prices.Since the efficient market hypothesis has been introduced,it has become an interest in the empirical research of the security market.It is one of the most controversial investment theories and there are many evidences supporting and also opposing this hypothesis.Nevertheless,this hypothesis still holds an important status in the basic framework of mainstream theories in modem financial markets.By analyzing simulated investment transactions in regard to stock trading of three different enterprises,this paper verified that the efficient market hypothesis is partially valid. 展开更多
关键词 Efficient market hypothesis market information china's stock market
下载PDF
Empirical Test of "Barometer Function" of China's Stock Market
2
作者 孙开连 王凯涛 从臻 《成组技术与生产现代化》 2002年第1期40-43,60,共5页
Through the empirical test of the economic and stock market price index from 1994-2001.6, this article finds that the price tendency of the stock market in China could reflect the economic status and the future trend,... Through the empirical test of the economic and stock market price index from 1994-2001.6, this article finds that the price tendency of the stock market in China could reflect the economic status and the future trend, thus has the function of barometer, additionally through the normal analysis of the continuing falling of the stock price since July 2001, so, the paper comes to the conclusion that the falling price is the reflection of the weak macro economy and the accelerating recession of the industries, and therefore is a warning of the possible worsened economic tendency. Suggestions are to adjust the macro fiscal and financial policy to prevent the economy from recessing. By the way the article conducts some of the primary analyses of punishments against market defiance and reducing state owned shares, thus to clarify some of the unclear concepts and prevent the misleading of economic adjust ment. 展开更多
关键词 中国 证券市场 经济晴雨表 宏观经济 股票价格指数
下载PDF
China's Stock Market:Inefficiencies and Institutional Implications 被引量:1
3
作者 Guoping Li 《China & World Economy》 SCIE 2008年第6期81-96,共16页
The dramatic movements of China's stock market in the past two and a half years have renewed debate among academics over the efficiency of China's stock market. The present paper tests the efficiency of China' s st... The dramatic movements of China's stock market in the past two and a half years have renewed debate among academics over the efficiency of China's stock market. The present paper tests the efficiency of China' s stock market. The realization of efficient markets requires the effective operation of a complete set of macro and micro mechanisms. However, such mechanisms are not only incomplete in China' s stock market, but are also ineffective because of the prevalence of institutional deficiencies. 展开更多
关键词 China's stock market efficient market short sale
原文传递
The Impact of Short Selling Disclosure Regulatory Constraint on the Lending Market and Stock Ownership
4
作者 Geoffrey Ducournau Jinliang Li +2 位作者 Yan Li Zigan Wang Qie Ellie Yin 《Journal of Modern Accounting and Auditing》 2024年第3期99-114,共16页
We examine the impact of the short sell disclosure(SSD)regime on the stock lending market and investor behaviors,employing a staggered difference-indifference(DiD)methodology.Our research reveals that the introduction... We examine the impact of the short sell disclosure(SSD)regime on the stock lending market and investor behaviors,employing a staggered difference-indifference(DiD)methodology.Our research reveals that the introduction of the disclosure regime enhances market transparency,resulting in a diminished appeal of stock ownership in the lending market for active investors.This shift is accompanied by a reduction in information leakage risks and longer loan durations.Specifically,our analysis reveals a significant decrease in the risk of loan recall by 4.87%,accompanied by an average increase of 23.72%in loan duration for short selling activities.Furthermore,the cost associated with short-sell disclosure causes a decline in both lending supply and short demand. 展开更多
关键词 short sell disclosure stock equity lending market stock ownership
下载PDF
Research on the Dynamic Volatility Relationship between Chinese and U.S. Stock Markets Based on the DCC-GARCH Model under the Background of the COVID-19 Pandemic
5
作者 Simin Wu Yan Liang Weixun Li 《Journal of Applied Mathematics and Physics》 2024年第9期3066-3080,共15页
This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t... This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education. 展开更多
关键词 DCC-GARCH Model stock market Linkage COVID-19 market Volatility Forecasting Analysis
下载PDF
Dynamic relationship between volume and volatility in the Chinese stock market:evidence from the MS-VAR model
6
作者 Feipeng Zhang Yilin Zhang +1 位作者 Yixiong Xu Yan Chen 《Data Science and Management》 2024年第1期17-24,共8页
Since market uncertainty,or volatility,serves as a crucial gauge for assessing the traits of market fluctuations,the link between stock market volume and price continues to be a focal point of interest in finance.This... Since market uncertainty,or volatility,serves as a crucial gauge for assessing the traits of market fluctuations,the link between stock market volume and price continues to be a focal point of interest in finance.This study examines the dynamic,nonlinear correlations between Chinese stock volatility,trading volume,and return using a hybrid approach that combines the Markov-switching regime with the vector autoregressive model(MS-VAR).The empirical findings are as follows:(1)The Chinese stock market can be divided into three regional systems:steady downward,steady upward,and high volatility.The three states have similar frequencies of occurrence,and their corresponding stable probabilities are not high,indicating that the Chinese stock market is unstable.(2)Asymmetric dynamic relationships exist between market volatility,investment return,and trading volume.For different regimes,while the effect of trading volume on volatility and return appears to be insignificant,the impacts of volatility and return on trading volume are considerably strong.(3)A regime-dependent,contemporaneous correlation between volatility and return is observed,which also reflects the behavior of the Chinese stock market“chasing up and down”.However,a positive contemporaneous correlation always exists between volatility and trading volumes in different regimes,indicating that uncertainty in the Chinese stock market is closely related to information inflow. 展开更多
关键词 VOLATILITY Trading volume MS-VAR model Chinese stock market
下载PDF
China’s Monetary Policy Impacts on Money and Stock Markets
7
作者 Fang Fang 《Proceedings of Business and Economic Studies》 2024年第2期46-52,共7页
This study investigated the impact of China’s monetary policy on both the money market and stock markets,assuming that non-policy variables would not respond contemporaneously to changes in policy variables.Monetary ... This study investigated the impact of China’s monetary policy on both the money market and stock markets,assuming that non-policy variables would not respond contemporaneously to changes in policy variables.Monetary policy adjustments are swiftly observed in money markets and gradually extend to the stock market.The study examined the effects of monetary policy shocks using three primary instruments:interest rate policy,reserve requirement ratio,and open market operations.Monthly data from 2007 to 2013 were analyzed using vector error correction(VEC)models.The findings suggest a likely presence of long-lasting and stable relationships among monetary policy,the money market,and stock markets.This research holds practical implications for Chinese policymakers,particularly in managing the challenges associated with fluctuation risks linked to high foreign exchange reserves,aiming to achieve autonomy in monetary policy and formulate effective monetary strategies to stimulate economic growth. 展开更多
关键词 Chinese money market Chinese stocks market Monetary policy Shanghai Interbank Offered Rate(SHIBOR) Vector error correction models
下载PDF
Transparency of China's Stock Market
8
作者 Xie Ping, Director, Research Bureau, People’s Bank of China. E-mail: pingx@public.bta.net.cn. 《China & World Economy》 SCIE 2003年第3期47-50,共4页
Ⅰ. Transparency and Truthfulness: Theoretical BackgroundAccording to information restriction theory devel-oped by Stiglitz, the 2001 Nobel Prize winner ofeconomics, transparency can raise market efficiencyand reduce ... Ⅰ. Transparency and Truthfulness: Theoretical BackgroundAccording to information restriction theory devel-oped by Stiglitz, the 2001 Nobel Prize winner ofeconomics, transparency can raise market efficiencyand reduce trading cost.The past economics theory 展开更多
关键词 of for on AS that IS Transparency of China’s stock market
原文传递
China's Insurance Fund Enters the Stock Market
9
《China's Foreign Trade》 2001年第3期34-35,共2页
关键词 In China’s Insurance Fund Enters the stock market
下载PDF
ST-Trader:A Spatial-Temporal Deep Neural Network for Modeling Stock Market Movement 被引量:6
10
作者 Xiurui Hou Kai Wang +1 位作者 Cheng Zhong Zhi Wei 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期1015-1024,共10页
Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model becaus... Stocks that are fundamentally connected with each other tend to move together.Considering such common trends is believed to benefit stock movement forecasting tasks.However,such signals are not trivial to model because the connections among stocks are not physically presented and need to be estimated from volatile data.Motivated by this observation,we propose a framework that incorporates the inter-connection of firms to forecast stock prices.To effectively utilize a large set of fundamental features,we further design a novel pipeline.First,we use variational autoencoder(VAE)to reduce the dimension of stock fundamental information and then cluster stocks into a graph structure(fundamentally clustering).Second,a hybrid model of graph convolutional network and long-short term memory network(GCN-LSTM)with an adjacency graph matrix(learnt from VAE)is proposed for graph-structured stock market forecasting.Experiments on minute-level U.S.stock market data demonstrate that our model effectively captures both spatial and temporal signals and achieves superior improvement over baseline methods.The proposed model is promising for other applications in which there is a possible but hidden spatial dependency to improve time-series prediction. 展开更多
关键词 Graph convolution network long-short term memory network stock market forecasting variational autoencoder(VAE)
下载PDF
Interdependence between the stock market and the bond market in one country:evidence from the subprime crisis and the European debt crisis 被引量:4
11
作者 Ke Cheng Xiaoguang Yang 《Financial Innovation》 2017年第1期58-79,共22页
Background:Once a global financial crisis breaks out,the interdependence between different financial markets suddenly increases and leads to a significant contagion.Methods:With 39 countries used as samples,this paper... Background:Once a global financial crisis breaks out,the interdependence between different financial markets suddenly increases and leads to a significant contagion.Methods:With 39 countries used as samples,this paper analyzes the interdependence between the stock market and the government bond market during the crisis periods.Results:It proves that the investor focuses more on the safety of their portfolio so there is neither a flight from quality nor a positive spillover during a crisis period.When one market is safer than the other market in the same country,a flight to quality occurs between the two markets;however,when the two markets in one country are both risky,negative spillover appears between these two markets.Conclusions:This means a flight to quality from the stock market to the short-term government bond will occur more frequently than will occur from the stock market to the long-term government bond markets.In addition,a flight to quality always emerges in developed markets,while negative spillovers take place in emerging markets and in the PIIGS countries(Portugal,Italy,Ireland,Greece,and Spain,referred to hereon as“PIIGS”)in the European Debt Crisis. 展开更多
关键词 market suddenly stock
下载PDF
Can the Baidu Index predict realized volatility in the Chinese stock market? 被引量:5
12
作者 Wei Zhang Kai Yan Dehua Shen 《Financial Innovation》 2021年第1期154-184,共31页
This paper incorporates the Baidu Index into various heterogeneous autoregressive type time series models and shows that the Baidu Index is a superior predictor of realized volatility in the SSE 50 Index.Furthermore,t... This paper incorporates the Baidu Index into various heterogeneous autoregressive type time series models and shows that the Baidu Index is a superior predictor of realized volatility in the SSE 50 Index.Furthermore,the predictability of the Baidu Index is found to rise as the forecasting horizon increases.We also find that continuous components enhance predictive power across all horizons,but that increases are only sustained in the short and medium terms,as the long-term impact on volatility is less persistent.Our findings should be expected to influence investors interested in constructing trading strategies based on realized volatility. 展开更多
关键词 Realized volatility HAR model Baidu Index Chinese stock market
下载PDF
Predicting Stock Prices Using Polynomial Classifiers: The Case of Dubai Financial Market 被引量:4
13
作者 Khaled Assaleh Hazim El-Baz Saeed Al-Salkhadi 《Journal of Intelligent Learning Systems and Applications》 2011年第2期82-89,共8页
Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile... Predicting stock price movements is a challenging task for academicians and practitioners. In particular, forecasting price movements in emerging markets seems to be more elusive because they are usually more volatile often accompa-nied by thin trading-volumes and they are susceptible to more manipulation compared to mature markets. Technical analysis of stocks and commodities has become a science on its own;quantitative methods and techniques have been applied by many practitioners to forecast price movements. Lagging and sometimes leading technical indicators pro-vide rich quantitative tools for traders and investors in their attempt to gain advantage when making investment or trading decisions. Artificial Neural Networks (ANN) have been used widely in predicting stock prices because of their capability in capturing the non-linearity that often exists in price movements. Recently, Polynomial Classifiers (PC) have been applied to various recognition and classification application and showed favorable results in terms of recog-nition rates and computational complexity as compared to ANN. In this paper, we present two prediction models for predicting securities’ prices. The first model was developed using back propagation feed forward neural networks. The second model was developed using polynomial classifiers (PC), as a first time application for PC to be used in stock prices prediction. The inputs to both models were identical, and both models were trained and tested on the same data. The study was conducted on Dubai Financial Market as an emerging market and applied to two of the market’s leading stocks. In general, both models achieved very good results in terms of mean absolute error percentage. Both models show an average error around 1.5% predicting the next day price, an average error of 2.5% when predicting second day price, and an average error of 4% when predicted the third day price. 展开更多
关键词 DUBAI FINANCIAL market POLYNOMIAL CLASSIFIERS stock market Neural Networks
下载PDF
Dynamics of volatility spillover between stock market and foreign exchange market: evidence from Asian Countries 被引量:3
14
作者 Khalil Jebran Amjad Iqbal 《Financial Innovation》 2016年第1期29-48,共20页
Background:The purpose of this study is to examine volatility spillover effects between stock market and foreign exchange market in selected Asian countries;Pakistan,India,Sri Lanka,China,Hong Kong and Japan.This stud... Background:The purpose of this study is to examine volatility spillover effects between stock market and foreign exchange market in selected Asian countries;Pakistan,India,Sri Lanka,China,Hong Kong and Japan.This study considered daily data from 4th January,1999 to 1st January,2014.Methods:This study opted EGARCH(Exponential Generalized Auto Regressive Conditional Heteroskedasticity)model for the purpose of analyzing asymmetric volatility spillover effects between stock and foreign exchange market.Results:The EGARCH analyses reveal bidirectional asymmetric volatility spillover between stock market and foreign exchange market of Pakistan,China,Hong Kong and Sri Lanka.The results reveal unidirectional transmission of volatility from stock market to foreign exchange market of India.The analysis reveals no evidence of volatility transmission between the two markets in reference to Japan.Conclusions:The result of this study provide valuable insights to economic policy makers for financial stability perspective and to investors regarding decision making in international portfolio and currency risk strategies. 展开更多
关键词 Volatility spillover Asian Countries EGARCH Exchange rate stock market
下载PDF
Stock Market Prediction Using Heat of Related Keywords on Micro Blog 被引量:4
15
作者 Shengchen Zhou Xunzhi Shi +2 位作者 Yunchen Sun Wenting Qu Yingzi Shi 《Journal of Software Engineering and Applications》 2013年第3期37-41,共5页
Whether the stock market investors’ emotion can influence the stock market itself is one of the hot topic in financial research. In this paper, a method based on the heat of related keywords on Micro Blog is proposed... Whether the stock market investors’ emotion can influence the stock market itself is one of the hot topic in financial research. In this paper, a method based on the heat of related keywords on Micro Blog is proposed, as Micro Blog is an ideal source for capturing public opinions towards certain topic. We choose Shanghai Composite index as the research object, through correlation analysis, Granger causality analysis, and support vector machine classification, the results have shown that the keywords heat on micro blog can make a short-time prediction of stock market, and the keyword which expresses negative emotion have more powerful prediction ability. 展开更多
关键词 Micro BLOG stock market Prediction EMOTION SVM
下载PDF
An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination 被引量:4
16
作者 Hakan Gunduz 《Financial Innovation》 2021年第1期585-608,共24页
In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)models.These models were trained with four different f... In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)models.These models were trained with four different feature sets and their performances were evaluated in terms of accuracy and F-measure metrics.While the first experiments directly used the own stock features as the model inputs,the second experiments utilized reduced stock features through Variational AutoEncoders(VAE).In the last experiments,in order to grasp the effects of the other banking stocks on individual stock performance,the features belonging to other stocks were also given as inputs to our models.While combining other stock features was done for both own(named as allstock_own)and VAE-reduced(named as allstock_VAE)stock features,the expanded dimensions of the feature sets were reduced by Recursive Feature Elimination.As the highest success rate increased up to 0.685 with allstock_own and LSTM with attention model,the combination of allstock_VAE and LSTM with the attention model obtained an accuracy rate of 0.675.Although the classification results achieved with both feature types was close,allstock_VAE achieved these results using nearly 16.67%less features compared to allstock_own.When all experimental results were examined,it was found out that the models trained with allstock_own and allstock_VAE achieved higher accuracy rates than those using individual stock features.It was also concluded that the results obtained with the VAE-reduced stock features were similar to those obtained by own stock features. 展开更多
关键词 stock market prediction Variational autoencoder Recursive feature elimination Long-short term memory Borsa Istanbul LightGBM
下载PDF
Investor sentiments and stock marketsduring the COVID-19 pandemic 被引量:2
17
作者 Emre Cevik Buket Kirci Altinkeski +1 位作者 Emrah Ismail Cevik Sel Dibooglu 《Financial Innovation》 2022年第1期1896-1929,共34页
This study examines the relationship between positive and negative investor sentiments and stock market returns and volatility in Group of 20 countries using variousmethods, including panel regression with fixed effec... This study examines the relationship between positive and negative investor sentiments and stock market returns and volatility in Group of 20 countries using variousmethods, including panel regression with fixed effects, panel quantile regressions, apanel vector autoregression (PVAR) model, and country-specific regressions. We proxyfor negative and positive investor sentiments using the Google Search Volume Indexfor terms related to the coronavirus disease (COVID-19) and COVID-19 vaccine, respectively. Using weekly data from March 2020 to May 2021, we document significantrelationships between positive and negative investor sentiments and stock marketreturns and volatility. Specifically, an increase in positive investor sentiment leads toan increase in stock returns while negative investor sentiment decreases stock returnsat lower quantiles. The effect of investor sentiment on volatility is consistent acrossthe distribution: negative sentiment increases volatility, whereas positive sentimentreduces volatility. These results are robust as they are corroborated by Granger causalitytests and a PVAR model. The findings may have portfolio implications as they indicatethat proxies for positive and negative investor sentiments seem to be good predictorsof stock returns and volatility during the pandemic. 展开更多
关键词 COVID-19 Investor sentiment stock market returns VOLATILITY
下载PDF
Detecting the lead–lag effect in stock markets:definition,patterns,and investment strategies 被引量:2
18
作者 Yongli Li Tianchen Wang +1 位作者 Baiqing Sun Chao Liu 《Financial Innovation》 2022年第1期1478-1513,共36页
Human activities widely exhibit a power-law distribution.Considering stock trading as a typical human activity in the financial domain,the first aim of this paper is to validate whether the well-known power-law distri... Human activities widely exhibit a power-law distribution.Considering stock trading as a typical human activity in the financial domain,the first aim of this paper is to validate whether the well-known power-law distribution can be observed in this activity.Interestingly,this paper determines that the number of accumulated lead–lag days between stock pairs meets the power-law distribution in both the U.S.and Chinese stock markets based on 10 years of trading data.Based on this finding this paper adopts the power-law distribution to formally define the lead–lag effect,detect stock pairs with the lead–lag effect,and then design a pure lead–lag investment strategy as well as enhancement investment strategies by integrating the lead–lag strategy into classic alpha-factor strategies.Tests conducted on 20 different alpha-factor strategies demonstrate that both perform better than the selected benchmark strategy and that the lead–lag strategy provides useful signals that significantly improve the performance of basic alpha-factor strategies.Our results therefore indicate that the lead–lag effect may provide effective information for designing more profitable investment strategies. 展开更多
关键词 Power-law distribution Lead-lag effect stock market Complex network Investment strategy
下载PDF
Short-term and long-term Interconnectedness of stock returns in Western Europe and the global market 被引量:2
19
作者 Ajaya Kumar Panda Swagatika Nanda 《Financial Innovation》 2017年第1期1-24,共24页
Background:The present study examines the short term dynamics and long term equilibrium relationship among the stock markets of 17 countries in Western Europe as well as the world market,using time series techniques.M... Background:The present study examines the short term dynamics and long term equilibrium relationship among the stock markets of 17 countries in Western Europe as well as the world market,using time series techniques.Methods:Weekly returns of market benchmark indices of the respective countries are used from the second week of 1995 to the fourth week of December 2013.Results:The study finds that the market returns of Austria,Belgium,the Netherlands,and France are relatively less dynamically interlinked as compared with Britain,Denmark,Finland,Germany,Portugal,Spain,Sweden,Switzerland,Greece,Ireland,Luxembourg,and Norway,which are quite dynamically interlinked within the region as well as with the MSCI world index.Conclusion:There exists a strong long run equilibrium relationship between the return distributions of the stock markets within the region. 展开更多
关键词 stock market interlinkages COINTEGRATION VAR VECM MSCI
下载PDF
Dynamic connectedness between stock markets in the presence of the COVID‑19 pandemic:does economic policy uncertainty matter? 被引量:3
20
作者 Manel Youssef Khaled Mokni Ahdi Noomen Ajmi 《Financial Innovation》 2021年第1期273-299,共27页
This study investigates the dynamic connectedness between stock indices and the effect of economic policy uncertainty(EPU)in eight countries where COVID-19 was most widespread(China,Italy,France,Germany,Spain,Russia,t... This study investigates the dynamic connectedness between stock indices and the effect of economic policy uncertainty(EPU)in eight countries where COVID-19 was most widespread(China,Italy,France,Germany,Spain,Russia,the US,and the UK)by implementing the time-varying VAR(TVP-VAR)model for daily data over the period spanning from 01/01/2015 to 05/18/2020.Results showed that stock markets were highly connected during the entire period,but the dynamic spillovers reached unprecedented heights during the COVID-19 pandemic in the first quarter of 2020.Moreover,we found that the European stock markets(except Italy)transmitted more spillovers to all other stock markets than they received,primarily during the COVID-19 outbreak.Further analysis using a nonlinear framework showed that the dynamic connectedness was more pronounced for negative than for positive returns.Also,findings showed that the direction of the EPU effect on net connectedness changed during the pandemic onset,indicating that information spillovers from a given market may signal either good or bad news for other markets,depending on the prevailing economic situation.These results have important implications for individual investors,portfolio managers,policymakers,investment banks,and central banks. 展开更多
关键词 stock markets Dynamic connectedness COVID-19 pandemic Economic policy uncertainty TVP-VAR model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部