期刊文献+
共找到185,607篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of lithospheric thickness distribution on oil and gas basins,China seas and adjacent areas
1
作者 Jing Ma Wanyin Wang +4 位作者 Hermann Zeyen Yimi Zhang Zhongsheng Li Tao He Dingding Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期1-14,共14页
The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ... The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas. 展开更多
关键词 china seas and adjacent areas lithospheric thickness oil and gas basins
下载PDF
行业类英文外宣期刊高质量发展探析——以《China Oil&Gas》为例
2
作者 张希喜 《编辑学报》 北大核心 2024年第1期98-102,共5页
以《China Oil&Gas》为例,从期刊内容高质量发展、数字化发展、编辑人才培养3个方面阐述了行业类外宣期刊高质量发展的关键。内容高质量发展需要从“做好选题规划,深化期刊栏目特色;开拓优质稿源,提升文章专业深度;注重形式创新,加... 以《China Oil&Gas》为例,从期刊内容高质量发展、数字化发展、编辑人才培养3个方面阐述了行业类外宣期刊高质量发展的关键。内容高质量发展需要从“做好选题规划,深化期刊栏目特色;开拓优质稿源,提升文章专业深度;注重形式创新,加强传播能力建设;开展对外交流,形成期刊品牌效应”4方面着手。期刊数字化发展,需要完善期刊网站建设,加强同数字出版平台合作,有效利用新媒体平台,充分利用主办单位优势资源和平台。编辑人才培养应该注重培养和提升政治素质、编辑技能、英文水平,掌握新媒体传播方式。 展开更多
关键词 《中国油气》(英文) 高质量发展 内容质量 数字化发展 编辑人才培养
原文传递
Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China
3
作者 DU Lan TIAN Shengchuan +5 位作者 ZHAO Nan ZHANG Bin MU Xiaohan TANG Lisong ZHENG Xinjun LI Yan 《Journal of Arid Land》 SCIE CSCD 2024年第7期925-942,共18页
Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub... Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale.Therefore,we conducted a transect sampling of desert shrublands in Northwest China during the growing season(June–September)in 2021.Soil salinization(both the degree and type),shrub community structure(e.g.,shrub density and height),and biodiversity parameters(e.g.,Simpson diversity,Margalf abundance,Shannon-Wiener diversity,and Pielou evenness indices)were used to assess the effects of soil salinization on shrub community structure.The results showed that the primary degree of soil salinization in the study area was light salinization,with the area proportion of 69.8%.Whereas the main type of soil salinization was characterized as sulfate saline soil,also accounting for 69.8%of the total area.Notably,there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil,with an increase in longitude.Regional mean annual precipitation(MAP),mean annual evapotranspiration(MAE),elevation,and slope significantly contributed to soil salinization and its geochemical differentiation.As soil salinization intensified,shrub community structure displayed increased diversity and evenness,as indicated by the increases in the Simpson diversity,Shannon-Wiener diversity,and Pielou evenness indices.Moreover,the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions.Furthermore,regional climate and topography,such as MAP,MAE,and elevation,had greater effects on the distribution of shrub plants than soil salinization.These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species. 展开更多
关键词 soil salinization HALOPHYTES SHRUBLAND climate change BIODIVERSITY DRYLANDS Northwest china
下载PDF
The gradual subduction-collision evolution model of Proto-South China Sea and its control on oil and gas 被引量:1
4
作者 Xiaojun Xie Wu Tang +5 位作者 Gongcheng Zhang Zhigang Zhao Shuang Song Shixiang Liu Yibo Wang Jia Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期123-137,共15页
This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The re... This study involved outcrop,drilling,seismic,gravity,and magnetic data to systematically document the geological records of the subduction process of Proto-South China Sea(PSCS)and establish its evolution model.The results indicate that a series of arc-shaped ophiolite belts and calcalkaline magmatic rocks are developed in northern Borneo,both of which have the characteristics of gradually changing younger from west to east,and are direct signs of subduction and collision of PSCS.At the same time,the subduction of PSCS led to the formation of three accretion zones from the south to the north in Borneo,the Kuching belt,Sibu belt,and Miri belt.The sedimentary formation of northern Borneo is characterized by a three-layer structure,with the oceanic basement at the bottom,overlying the deep-sea flysch deposits of the Rajang–Crocker group,and the molasse sedimentary sequence that is dominated by river-delta and shallow marine facies at the top,recording the whole subduction–collision–orogeny process of PSCS.Further,seismic reflection and tomography also confirmed the subduction and collision of PSCS.Based on the geological records of the subduction and collision of PSCS,combined with the comprehensive analysis of segmented expansion and key tectonic events in the South China Sea,we establish the“gradual”subduction-collision evolution model of PSCS.During the late Eocene to middle Miocene,the Zengmu,Nansha,and Liyue–Palawan blocks were separated by West Baram Line and Balabac Fault,which collided with the Borneo block and Kagayan Ridge successively from the west to the east,forming several foreland basin systems,and PSCS subducted and closed from the west to the east.The subduction and extinction of PSCS controlled the oil and gas distribution pattern of southern South China Sea(SSCS)mainly in three aspects.First,the“gradual”closure process of PSCS led to the continuous development of many large deltas in SSCS.Second,the deltas formed during the subduction–collision of PSCS controlled the development of source rocks in the basins of SSCS.Macroscopically,the distribution and scale of deltas controlled the distribution and scale of source rocks,forming two types of source rocks,namely,coal measures and terrestrial marine facies.Microscopically,the difference of terrestrial higher plants carried by the delta controlled the proportion of macerals of source rocks.Third,the difference of source rocks mainly controlled the distribution pattern of oil and gas in SSCS.Meanwhile,the difference in the scale of source rocks mainly controlled the difference in the amount of oil and gas discoveries,resulting in a huge amount of oil and gas discoveries in the basin of SSCS.Meanwhile,the difference of macerals of source rocks mainly controlled the difference of oil and gas generation,forming the oil and gas distribution pattern of“nearshore oil and far-shore gas”. 展开更多
关键词 Proto-South china Sea gradual subduction-collision evolution model oil and gas distribution southern South china Sea BORNEO
下载PDF
Influence of the Moho surface distribution on the oil and gas basins in China seas and adjacent areas 被引量:4
5
作者 Yimi Zhang Wanyin Wang +5 位作者 Linzhi Li Xingang Luo Dingding Wang Tao He Feifei Zhang Jing Ma 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期167-188,共22页
Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho charact... Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities. 展开更多
关键词 china Seas and adjacent areas Moho surface oil and gas basins
下载PDF
Numerical study on gas production via a horizontal well from hydrate reservoirs with different slope angles in the South China Sea
6
作者 Tingting Luo Jianlin Song +5 位作者 Xiang Sun Fanbao Cheng Madhusudhan Bangalore Narasimha Murthy Yulu Chen Yi Zhao Yongchen Song 《Deep Underground Science and Engineering》 2024年第2期171-181,共11页
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China... It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs. 展开更多
关键词 effective stress low‐permeability reservoirs natural gas hydrate production numerical simulation SETTLEMENT slope angle the South china
下载PDF
Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea
7
作者 Jin-feng Ren Hai-jun Qiu +6 位作者 Zeng-gui Kuang Ting-wei Li Yu-lin He Meng-jie Xu Xiao-xue Wang Hong-fei Lai Jin Liang 《China Geology》 CAS CSCD 2024年第1期36-50,共15页
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra... Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates. 展开更多
关键词 Venting gas hydrates Deep-large faults gas chimney gas-escape pipes High-resolution 3D seismic Logging while drilling Qiongdongnan Basin South china Sea
下载PDF
Spatio-temporal Evaluation of Multi-scale Cultivated Land System Resilience in Black Soil Region from 2000 to 2019:A Case Study of Liaoning Province,Northeast China
8
作者 WANG Yue JIANG Yuting ZHU Guoxu 《Chinese Geographical Science》 SCIE CSCD 2024年第1期168-180,共13页
It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cult... It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment. 展开更多
关键词 cultivated land system resilience(CLSR) rank-sum ratio comprehensive evaluation(RSR) multi-scales influencing factors black soil region Liaoning Province china
下载PDF
Geological reservoir and resource potential(10^(13)m^(3))of gas hydrates in the South China Sea
9
作者 Pi-bo Su Wei Wei +5 位作者 Yun-bao Sun Yao-yao Lü Huai Cheng Wei-feng Han Wei Zhang Jin-qiang Liang 《China Geology》 CAS CSCD 2024年第3期422-444,共23页
A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this ... A detailed understanding of the distribution and potential of natural gas hydrate(NGHs)resources is crucial to fostering the industrialization of those resources in the South China Sea,where NGHs are abundant.In this study,this study analyzed the applicability of resource evaluation methods,including the volumetric,genesis,and analogy methods,and estimated NGHs resource potential in the South China Sea by using scientific resource evaluation methods based on the factors controlling the geological accumulation and the reservoir characteristics of NGHs.Furthermore,this study compared the evaluation results of NGHs resource evaluations in representative worldwise sea areas via rational analysis.The results of this study are as follows:(1)The gas hydrate accumulation in the South China Sea is characterized by multiple sources of gas supply,multi-channel migration,and extensive accumulation,which are significantly different from those of oil and gas and other unconventional resources.(2)The evaluation of gas hydrate resources in the South China Sea is a highly targeted,stratified,and multidisciplinary evaluation of geological resources under the framework of a multi-type gas hydrate resource evaluation system and focuses on the comprehensive utilization of multi-source heterogeneous data.(3)Global NGHs resources is n×10^(15)m^(3),while the NGHs resources in the South China Sea are estimated to be 10^(13)m^(3),which is comparable to the abundance of typical marine NGHs deposits in other parts of the world.In the South China Sea,the NGHs resources have a broad prospect and provide a substantial resource base for production tests and industrialization of NGHs. 展开更多
关键词 Reservoir characteristics Natural gas hydrates gas migration Resource potential Resource evaluation methods Hierarchical evaluation system Volumetric method South china Sea Clean energy exploration engineering
下载PDF
Characteristics of carbon isotopic composition of alkane gas in large gas fields in China
10
作者 DAI Jinxing NI Yunyan +4 位作者 GONG Deyu HUANG Shipeng LIU Quanyou HONG Feng ZHANG Yanling 《Petroleum Exploration and Development》 SCIE 2024年第2期251-261,共11页
Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output t... Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted. 展开更多
关键词 china large gas field bacterial gas oil-related gas coal-derived gas abiogenic gas alkane gas carbon isotopic composition δ^(13)C_(1)chart
下载PDF
Research progress and key issues of ultra-deep oil and gas exploration in China
11
作者 HE Dengfa JIA Chengzao +8 位作者 ZHAO Wenzhi XU Fengyin LUO Xiaorong LIU Wenhui TANG Yong GAO Shanlin ZHENG Xiujuan LI Di ZHENG Na 《Petroleum Exploration and Development》 SCIE 2023年第6期1333-1344,共12页
Based on the recent oil and gas discoveries and geological understandings on the ultra-deep strata of sedimentary basins, the formation and occurrence of hydrocarbons in the ultra-deep strata were investigated with re... Based on the recent oil and gas discoveries and geological understandings on the ultra-deep strata of sedimentary basins, the formation and occurrence of hydrocarbons in the ultra-deep strata were investigated with respect to the processes of basin formation, hydrocarbon generation, reservoir formation and hydrocarbon accumulation, and key issues in ultra-deep oil and gas exploration were discussed. The ultra-deep strata in China underwent two extensional-convergent cycles in the Meso-Neoproterozoic Era and the Early Paleozoic Era respectively, with the tectonic-sedimentary differentiation producing the spatially adjacent source-reservoir assemblages. There are diverse large-scale carbonate reservoirs such as mound-beach, dolomite, karst fracture-vug, fractured karst and faulted zone, as well as over-pressured clastic rock and fractured bedrock reservoirs. Hydrocarbons were accumulated in multiple stages, accompanied by adjusting and finalizing in the late stage. The distribution of hydrocarbons is controlled by high-energy beach zone, regional unconformity, paleo-high and large-scale fault zone. The ultra-deep strata endow oil and gas resources as 33% of the remaining total resources, suggesting an important successive domain for hydrocarbon development in China. The large-scale pool-forming geologic units and giant hydrocarbon enrichment zones in ultra-deep strata are key and promising prospects for delivering successive discoveries. The geological conditions and enrichment zone prediction of ultra-deep oil and gas are key issues of petroleum geology. 展开更多
关键词 china ultra-deep oil and gas multi-cycle superimposed basin exploration progress exploration technology light oil natural gas
下载PDF
Ground Penetrating Radar (GPR) Identification Method for Agricultural Soil Stratification in a Typical Mollisols Area of Northeast China 被引量:1
12
作者 RUAN Weimin LIU Baojiang +2 位作者 LIU Huanjun DONG Hang SUI Yueyu 《Chinese Geographical Science》 SCIE CSCD 2023年第4期664-678,共15页
In order to achieve a rapid and accurate identification of soil stratification information and accelerate the development of smart agriculture,this paper conducted soil stratification experiments on agricultural soils... In order to achieve a rapid and accurate identification of soil stratification information and accelerate the development of smart agriculture,this paper conducted soil stratification experiments on agricultural soils in the Mollisols area of Northeast China using Ground Penetrating Radar(GPR)and obtained different types of soil with frequencies of 500 MHz,250 MHz,and 100 MHz antennas.The soil profile data were obtained for 500 MHz,250 MHz,and 100 MHz antennas,and the dielectric properties of each type of soil were analyzed.In the image processing procedure,wavelet analysis was first used to decompose the pre-processed radar signal and reconstruct the high-frequency information to obtain the reconstructed signal containing the stratification information.Secondly,the reconstructed signal is taken as an envelope to enhance the stratification information.The Hilbert transform is applied to the envelope signal to find the time-domain variation of the instantaneous frequency and determine the time-domain location of the stratification.Finally,the dielectric constant of each soil horizon is used to obtain the propagation velocity of the electromagnetic wave at the corresponding position to obtain the stratification position of each soil horizon.The research results show that the 500 MHz radar antenna can accurately delineate Ap/Ah,horizon and the absolute accuracy of the stratification is within 5 cm.The effect on the soil stratification below the tillage horizon is not apparent,and the absolute accuracy of the 250 MHz and 100 MHz radar antennas on the stratification is within 9 cm.The overwhelming majority of the overall calculation errors are kept to within 15%.Based on the three central frequency antennas,the soil horizon detection rate reaches 93.3%,which can achieve accurate stratification of soil profiles within 1 m.The experimental and image processing methods used are practical and feasible;however,the GPR will show a missed detection for soil horizons with only slight differences in dielectric properties.Overall,this study can quickly and accurately determine the information of each soil stratification,ultimately providing technical support for acquiring soil configuration information and developing smart agriculture. 展开更多
关键词 soil stratification ground-penetrating radar PROFILING wavelet analysis envelope signal Northeast china
下载PDF
Tectonic Framework and Deep Structure of South China and Their Constraint to Oil-Gas Field Distribution 被引量:16
13
作者 WANG Qingchen LIU Jinsong +1 位作者 DU Zhili CAI Liguo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期170-178,共9页
South China could be divided into one stable craton, the Yangtze Craton (YzC), and several orogenic belts in the surrounding region, that is the Triassic Qinling-Dabie Orogenic Belt (QDOB) in the north, the Songpa... South China could be divided into one stable craton, the Yangtze Craton (YzC), and several orogenic belts in the surrounding region, that is the Triassic Qinling-Dabie Orogenic Belt (QDOB) in the north, the Songpan-Garze Orogenic Belt (SGOB) in the northwest, the Mesozoic-Cenozoic Threeriver Orogenic Belt (TOB) in the west, the Youjiang Orogenic Belt (YOB) in the southwest, the Middle Paleozoic Huanan Orogenic Belt (HOB) in the southeast, and the Mesozoic-Cenozoic Maritime Orogenic Belt (MOB) along the coast. Seismic tomographic images reveal that the Moho depth is deeper than 40 km and the lithosphere is about 210 km thick beneath the YzC. The SGOB is characterized by thick crust (〉40 km) and thin lithosphere (〈150 km). The HOB, YOB and MOB have a thin crust (〈40 km) and thin lithosphere (〈150 km). Terrestrial heat flow survey revealed a distribution pattern with a low heat flow region in the eastern YzC and western HOB and two high heat flow regions in the TOB and MOB respectively. Such a "high-low-high" heat flow distribution pattern could have resulted from Cenozoic asthenosphere upwelling. All oil-gas fields are concentrated in the central part of the YzC. Remnant oil pools have been discovered along the southern margin of the YzC and its adjacent orogenic belts. From a viewpoint of geological and geophysical structure, regions in South China with thick lithosphere and low heat flow value, as well as weak deformation, might be the ideal region for further petroleum exploration. 展开更多
关键词 deep structure heat flow PETROLEUM seismic tomography South china
下载PDF
Trade-off and Synergy of Rural Functions Under County Depopulation in the Typical Black Soil Region of Northeast China 被引量:1
14
作者 LI Dongmei WEN Qing +1 位作者 QI Yue ZHANG Pingyu 《Chinese Geographical Science》 SCIE CSCD 2023年第4期616-633,共18页
As the population continues to shrink in the black soil region of Northeast China since 2000,it is critical to master the impact of population shrinkage on rural functions to realize rural revitalization and sustainab... As the population continues to shrink in the black soil region of Northeast China since 2000,it is critical to master the impact of population shrinkage on rural functions to realize rural revitalization and sustainable development.In this study,we focused on the impacts of depopulation on the evolution and interrelationship of rural subfunctions.Based on the rural function indexes system,the TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)method,spatial analysis method,and mathematical statistics analysis method were used to summarize the spatial and temporal characteristics of rural function development,as well as the effect of population shrinkage in the typical black soil region of Northeast China.The results showed that depopulation varied in the extent and duration between the forested region and plain areas,which both impacted the trajectories of rural subfunctions evolution.For the economic development function and ecological conservation function,the effect of continuous slight depopulation was beneficial,while the effect of rapid depopulation was adverse,which was exactly opposite to the agricultural production function.All forms of population shrinkage were conducive to the development of the social security function.With the deepening population shrinkage,depopulation mainly promoted the collaborative development between subfunctions in this study,except the relationship between agricultural production and social security function.But effects of depopulation on the interrelationship of rural subfunctions varied between the forested region and plain areas in some cases.The results provided evidence for the cognition that population shrinkage had complicated effects on rural subfunctions. 展开更多
关键词 rural function depopulation trade-off and synergy typical black soil region Northeast china
下载PDF
Spatial distribution and inventory of natural gas hydrate in the Qiongdongnan Basin,northern South China Sea 被引量:1
15
作者 Zhongxian ZHAO Ning QIU +4 位作者 Zhen SUN Wen YAN Genyuan LONG Pengchun LI Haiteng ZHUO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期729-739,共11页
Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiong... Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiongdongnan Basin,northern South China Sea.However,the spatial distribution,controlling factors,and favorable areas are not well defined.Here we use the available high-resolution seismic lines,well logging,and heat flow data to explore the issues by calculating the thickness of gas hydrate stability zone(GHSZ)and estimating the inventory.Results show that the GHSZ thickness ranges between mostly~200 and 400 m at water depths>500 m.The gas hydrate inventory is~6.5×109-t carbon over an area of~6×104 km2.Three areas including the lower uplift to the south of the Lingshui sub-basin,the Songnan and Baodao sub-basins,and the Changchang sub-basin have a thick GHSZ of~250-310 m,250-330 m,and 350-400 m,respectively,where water depths are~1000-1600 m,1000-2000 m,and2400-3000 m,respectively.In these deep waters,bottom water temperatures vary slightly from~4 to 2℃.However,heat flow increases significantly with water depth and reaches the highest value of~80-100 mW/m2 in the deepest water area of Changchang sub-basin.High heat flow tends to reduce GHSZ thickness,but the thickest GHSZ still occurs in the Changchang sub-basin,highlighting the role of water depth in controlling GHSZ.The lower uplift to the south of the Lingshui sub-basin has high deposition rate(~270-830 m/Ma in 1.8-0 Ma);the thick Cenozoic sediment,rich biogenic and thermogenic gas supplies,and excellent transport systems(faults,diapirs,and gas chimneys)enables it a promising area of hydrate accumulation,from which hydrate-related bottom simulating reflectors,gas chimneys,and active cold seeps were widely revealed. 展开更多
关键词 gas hydrate stability zone gas hydrate inventory Qiongdongnan Basin South china Sea
下载PDF
Oil and Gas Accumulation in the Foreland Basins,Central and Western China 被引量:5
16
作者 SONG Yan ZHAO Menjun +2 位作者 LIU Shaobo HONG Feng FANG Shihu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第2期382-405,共24页
Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable ... Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable exploration areas, the foreland basins in central and western China can be divided into three structural types: superimposed, retrogressive and reformative foreland basin (or thrust belt), each with distinctive petroleum system characteristics in their petroleum system components (such as the source rock, reservoir rock, caprock, time of oil and gas accumulation, the remolding of oil/gas reservoir after accumulation, and the favorable exploration area, etc.). The superimposed type foreland basins, as exemplified by the Kuqa Depression of the Tarim Basin, characterized by two stages of early and late foreland basin development, typically contain at least two hydrocarbon source beds, one deposited in the early foreland development and another in the later fault-trough lake stage. Hydrocarbon accumulations in this type of foreland basin often occur in multiple stages of the basin development, though most of the highly productive pools were formed during the late stage of hydrocarbon migration and entrapment (Himalayan period). This is in sharp contrast to the retrogressive foreland basins (only developing foreland basin during the Permian to Triassic) such as the western Sichuan Basin, where prolific hydrocarbon source rocks are associated with sediments deposited during the early stages of the foreland basin development. As a result, hydrocarbon accumulations in retrogressive foreland basins occur mainly in the early stage of basin evolution. The reformative foreland basins (only developing foreland basin during the Himalayan period) such as the northern Qaidam Basin, in contrast, contain organic-rich, lacustrine source rocks deposited only in fault-trough lake basins occurring prior to the reformative foreland development during the late Cenozoic, with hydrocarbon accumulations taking place relatively late (Himalayan period). Therefore, the ultimate hydrocarbon potentials in the three types of foreland basins are largely determined by the extent of spatial and temporal matching among the thrust belts, hydrocarbon source kitchens, and regional and local caprocks. 展开更多
关键词 hydrocarbon accumulation resource potential foreland basin central-western china
下载PDF
Exploration Potential of Marine Source Rocks Oil-Gas Reservoirs in China 被引量:8
17
作者 ZHAO Zongju 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第5期779-797,共19页
So far, more than 150 marine oil-gas fields have been found onshore and offshore about 350. The marine source rocks are mainly Paleozoic and Mesozoic onshore whereas Tertiary offshore. Three genetic categories of oil-... So far, more than 150 marine oil-gas fields have been found onshore and offshore about 350. The marine source rocks are mainly Paleozoic and Mesozoic onshore whereas Tertiary offshore. Three genetic categories of oil-gas reservoirs have been defined for the marine reservoirs in China: primary reservoirs, secondary reservoirs and hydrocarbon-regeneration reservoirs. And three exploration prospects have also been suggested: (1) Primary reservoirs prospects, which are chiefly distributed in many Tertiary basins of the South China Sea (SCS), the Tertiary shelf basins of the East China Sea (ECS) and the Paleozoic of Tarim basin, Sichuan basin and Ordos basin. To explore large-middle-scale even giant oil-gas fields should chiefly be considered in this category reservoirs. These basins are the most hopeful areas to explore marine oil-gas fields in China, among which especially many Tertiary basins of the SCS should be strengthened to explore. (2) Secondary reservoirs prospects, which are mainly distributed in the Paleozoic and Mesozoic of the Tarim basin, Sichuan basin, Qiangtang basin and Chuxiong basin in western China, of which exploration potential is less than that of the primary reservoirs. (3) Hydrocarbon-regeneration reservoirs prospects, which are chiefly distributed in the Bohai Bay basin, North Jiangsu-South Yellow Sea basin, southern North China basin, Jianghan basin, South Poyang basin in eastern China and the Tarim basin in western China, of which source rocks are generally the Paleozoic. And the reservoirs formed by late-stage (always Cenozoic) secondary hydrocarbon generation of the Paleozoic source rocks should mainly be considered to explore, among which middle-small and small oil-gas fields are the chief exploration targets. As a result of higher thermal evolution of Paleozoic and Mesozoic source rocks, the marine reservoirs onshore are mainly gas fields, and so far marine oil fields have only been found in the Tarim basin. No other than establishing corresponding marine oil-gas exploration and development strategy and policy, sufficiently enhancing cognition to the particularity and complexity of China's marine petroleum geology, and applying new thoughts, new theories and new technologies, at the same time tackling some key technologies, it is possible to fast and effectually exploit and utilize the potential huge marine oil-gas resources of China. 展开更多
关键词 MARINE primary reservoirs secondary reservoirs hydrocarbon-regeneration reservoirs reservoirs formation rules exploration strategy china
下载PDF
Enhanced Seasonal Predictability of Spring Soil Moisture over the Indo-China Peninsula for Eastern China Summer Precipitation under Non-ENSO Conditions 被引量:1
18
作者 Chujie GAO Gen LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1632-1648,共17页
Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results sho... Seasonal prediction of summer precipitation over eastern China is closely linked to the East Asian monsoon circulation,which is largely affected by the El Niño-Southern Oscillation(ENSO).In this study,results show that spring soil moisture(SM)over the Indo-China peninsula(ICP)could be a reliable seasonal predictor for eastern China summer precipitation under non-ENSO conditions.When springtime SM anomalies are present over the ICP,they trigger a structured response in summertime precipitation over most of eastern China.The resultant south-to-north,tri-polar configuration of precipitation anomalies has a tendency to yield increased(decreased)precipitation in the Yangtze River basin and decreased(increased)in South and North China with a drier(wetter)spring soil condition in the ICP.The analyses show that ENSO exerts a powerful control on the East Asian circulation system in the ENSO-decaying summer.In the case of ENSO forcing,the seasonal predictability of the ICP spring SM for eastern China summer precipitation is suppressed.However,in the absence of the influence of ENSO sea surface temperature anomalies from the preceding winter,the SM anomalies over the ICP induce abnormal local heating and a consequent geopotential height response owing to its sustained control on local temperature,which could,in turn,lead to abnormal eastern China summer precipitation by affecting the East Asian summer monsoon circulation.The present findings provide a better understanding of the complexity of summer climate predictability over eastern China,which is of potential significance for improving the livelihood of the people. 展开更多
关键词 summer precipitation El Niño-Southern Oscillation soil moisture Indo-china Peninsula eastern china East Asian summer monsoon
下载PDF
Genesis Types and Diagenesis Compaction Mechanisms of Sandstone Rreservoirs in Dynamic Environments in Oil/Gas Basins in China 被引量:7
19
作者 Shou Jianfeng Si Chunsong Wang Xin 《Petroleum Science》 SCIE CAS CSCD 2006年第3期23-31,共9页
The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genes... The diversity of sandstone diagenesis mechanisms caused by the complex geological conditions of oil/gas basins in China could hardly be reasonably explained by the traditional concept of burial diagenesis. Three genesis types of thermal diagenesis, tectonic diagenesis and fluid diagenesis are presented on the basis of the dynamic environment of the oil/gas basins and.the controlling factors and mechanisms of sandstone diagenesis. Thermal diagenesis of sandstone reservoirs is related not only to the effect of formation temperature on diagenesis, but also to the significant changes in diagenesis caused by geothermal gradients. The concept of thermal compaction is presented. Thermal compaction becomes weaker with increasing depth and becomes stronger at a higher geothermal gradient. At the same formation temperature, the sandstone porosity in the region with a lower geothermal gradient is e^0.077+0.0042T times higher than that in the region with a higher geothermal gradient. Both sudden and gradual changes are observed in diagenetic evolution caused by structural deformation. Average sandstone compaction increased by 0.1051% for every 1.0MPa increase of lateral tectonic compressional stress, while late tectonic napping helped to preserve a higher porosity of underlying sandstone reservoir. Fluid diagenesis is a general phenomenon. The compaction caused by fluid properties is significant. The coarser the grain size, the stronger the fluid effect on compaction. The greater the burial depth, the weaker the fluid effect on compaction for the specific reservoir lithology and the greater the difference in the fluid effects on compaction between different grain sizes. 展开更多
关键词 oil/gas basins in china sandstone reservoir genesis types diagenesis compaction mechanism
下载PDF
The potential of domestic production and imports of oil and gas in China:an energy return on investment perspective 被引量:4
20
作者 Zhao-Yang Kong Xiu-Cheng Dong +3 位作者 Qian Shao Xin Wan Da-Lin Tang Gui-Xian Liu 《Petroleum Science》 SCIE CAS CSCD 2016年第4期788-804,共17页
Concerns about China’s energy security have escalated because of the country’s high dependency on oil and gas imports, so it is necessary to calculate the availability of domestic oil and gas resources and China’s ... Concerns about China’s energy security have escalated because of the country’s high dependency on oil and gas imports, so it is necessary to calculate the availability of domestic oil and gas resources and China’s ability to obtain foreign energy through trade. In this work,the calculation was done by using the energy return on investment(EROI) method. The results showed that the EROIstnd(i.e., standard EROI) of China’s oil and gas extraction decreased from approximately 17.3:1 in 1986 to 8.4:1 in 2003, but it increased to 12.2:1 in 2013. From a company-level perspective, the EROIstnddiffered for different companies and was in the range of(8–12):1. The EROI2,d(EROI considering energy outputs after processed and direct energy inputs) for different companies was in the range of(3–7):1. The EROI of imported oil(EROIIO)declined from 14.8:1 in 1998 to approximately 4.8:1 in 2014, and the EROI of imported natural gas(EROIING)declined from 16.7:1 in 2009 to 8.6:1 in 2014. In 2015, the EROIIO and EROIING showed a slight increase due to decreasing import prices. In general, this paper suggests that from a net energy perspective, it has become more difficult for China to obtain oil and gas from both domestic production and imports. China is experiencing an EROI decline, which demonstrates the risk in the use of unsustainable fossil resources. 展开更多
关键词 EROI oil and gas extraction Imported oil Imported natural gas china
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部