The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark sour...The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.展开更多
基于山东省2021年3月—2022年2月1519个气象观测站2 m气温观测数据,对中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System,HRCLDAS)和欧洲中期天气预报中心第五...基于山东省2021年3月—2022年2月1519个气象观测站2 m气温观测数据,对中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System,HRCLDAS)和欧洲中期天气预报中心第五代陆面再分析数据集(ERA5-Land)逐小时2 m气温分析的日统计数据(平均气温、最高气温、最低气温)进行对比评估。结果显示:(1)HRCLDAS/ERA5-Land日统计平均气温、最高气温、最低气温的均方根误差分别为0.1/1.2℃、0.6/1.9℃、0.4/1.7℃,表明HRCLDAS具有更高的精度,且在不同地理区域、不同海拔高度的表现均优于ERA5-Land,大部地区的偏差(-0.5~0.5℃)远低于ERA5-Land(-2.0~2.0℃)。(2)两套数据对高温及寒潮过程的监测能力对比评估表明,HRCLDAS能够捕捉到大部分的高温以及寒潮过程,其与观测的高温日数及寒潮日数空间分布较为相似,但对影响范围存在一定的低估;ERA5-Land则只能监测到部分高温及寒潮过程,并对高温日数与寒潮日数存在严重的低估。展开更多
基金Supported by the National Key R&D Program of China(No.2016YFC0303900)the Laoshan Laboratory(Nos.MGQNLM-KF201807,LSKJ202203604)the National Natural Science Foundation of China(No.42106072)。
文摘The Kuiyang-ST2000 deep-towed high-resolution multichannel seismic system was designed by the First Institute of Oceanography,Ministry of Natural Resources(FIO,MNR).The system is mainly composed of a plasma spark source(source level:216 dB,main frequency:750 Hz,frequency bandwidth:150-1200 Hz)and a towed hydrophone streamer with 48 channels.Because the source and the towed hydrophone streamer are constantly moving according to the towing configuration,the accurate positioning of the towing hydrophone array and the moveout correction of deep-towed multichannel seismic data processing before imaging are challenging.Initially,according to the characteristics of the system and the towing streamer shape in deep water,travel-time positioning method was used to construct the hydrophone streamer shape,and the results were corrected by using the polynomial curve fitting method.Then,a new data-processing workflow for Kuiyang-ST2000 system data was introduced,mainly including float datum setting,residual static correction,phase-based moveout correction,which allows the imaging algorithms of conventional marine seismic data processing to extend to deep-towed seismic data.We successfully applied the Kuiyang-ST2000 system and methodology of data processing to a gas hydrate survey of the Qiongdongnan and Shenhu areas in the South China Sea,and the results show that the profile has very high vertical and lateral resolutions(0.5 m and 8 m,respectively),which can provide full and accurate details of gas hydrate-related and geohazard sedimentary and structural features in the South China Sea.
文摘基于山东省2021年3月—2022年2月1519个气象观测站2 m气温观测数据,对中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System,HRCLDAS)和欧洲中期天气预报中心第五代陆面再分析数据集(ERA5-Land)逐小时2 m气温分析的日统计数据(平均气温、最高气温、最低气温)进行对比评估。结果显示:(1)HRCLDAS/ERA5-Land日统计平均气温、最高气温、最低气温的均方根误差分别为0.1/1.2℃、0.6/1.9℃、0.4/1.7℃,表明HRCLDAS具有更高的精度,且在不同地理区域、不同海拔高度的表现均优于ERA5-Land,大部地区的偏差(-0.5~0.5℃)远低于ERA5-Land(-2.0~2.0℃)。(2)两套数据对高温及寒潮过程的监测能力对比评估表明,HRCLDAS能够捕捉到大部分的高温以及寒潮过程,其与观测的高温日数及寒潮日数空间分布较为相似,但对影响范围存在一定的低估;ERA5-Land则只能监测到部分高温及寒潮过程,并对高温日数与寒潮日数存在严重的低估。