This paper presents a statistical scheme for the seasonal forecasting of North China's surface air temperature (NCSAT) during winter. Firstly, a prediction model for an decrease or increase of winter NCSAT is esta...This paper presents a statistical scheme for the seasonal forecasting of North China's surface air temperature (NCSAT) during winter. Firstly, a prediction model for an decrease or increase of winter NCSAT is established, whose predictors are available for no later than the previous September, as this is the most favorable month for seasonal forecasting up to two months ahead.The predicted NCSAT is then derived as the sum of the predicted increment of NCSAT and the previous NCSAT. The scheme successfully predicts the interannual and the decadal variability of NCSAT. Additionally, the advantages of the prediction scheme are discussed.展开更多
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin...An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.展开更多
基金jointly supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-QN202)the National Basic Research Program of China(Grant Nos.2010CB9503042 and 2009CB421406)strategic technological program of the Chinese Academy of Sciences(Grant No.XDA05090426)
文摘This paper presents a statistical scheme for the seasonal forecasting of North China's surface air temperature (NCSAT) during winter. Firstly, a prediction model for an decrease or increase of winter NCSAT is established, whose predictors are available for no later than the previous September, as this is the most favorable month for seasonal forecasting up to two months ahead.The predicted NCSAT is then derived as the sum of the predicted increment of NCSAT and the previous NCSAT. The scheme successfully predicts the interannual and the decadal variability of NCSAT. Additionally, the advantages of the prediction scheme are discussed.
基金China-Korea Cooperation Project on the development of oceanic monitoring and prediction system on nuclear safetythe Project of the National Programme on Global Change and Air-sea Interaction under contract No.GASI-03-IPOVAI-05
文摘An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.