It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using...It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational...Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.展开更多
This study examines the spatio-temporal characteristics of heavy precipitation forecasts in eastern China from the European Centre for Medium-Range Weather Forecasts(ECMWF) using the time-domain version of the Method ...This study examines the spatio-temporal characteristics of heavy precipitation forecasts in eastern China from the European Centre for Medium-Range Weather Forecasts(ECMWF) using the time-domain version of the Method for Object-based Diagnostic Evaluation(MODE-TD). A total of 23 heavy rainfall cases occurring between 2018 and 2021 are selected for analysis. Using Typhoon “Rumbia” as a case study, the paper illustrates how the MODE-TD method assesses the overall simulation capability of models for the life history of precipitation systems. The results of multiple tests with different parameter configurations reveal that the model underestimates the number of objects’ forecasted precipitation tracks, particularly at smaller radii. Additionally, the analysis based on centroid offset and area ratio tests for different classified precipitation objects indicates that the model performs better in predicting large-area, fast-moving, and longlifespan precipitation objects. Conversely, it tends to have less accurate predictions for small-area, slow-moving, and shortlifespan precipitation objects. In terms of temporal characteristics, the model overestimates the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. In terms of temporal characteristics, the model tends to overestimate the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. Overall, the model provides more accurate predictions for the duration and dissipation of precipitation objects with large-area or long-lifespan(such as typhoon precipitation) while having large prediction errors for precipitation objects with small-area or short-lifespan. Furthermore, the model’s simulation results regarding the generation of precipitation objects show that it performs relatively well in simulating the generation of large-area and fast-moving precipitation objects. However, there are significant differences in the forecasted generation of small-area and slow-moving precipitation objects after 9 hours.展开更多
Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) durin...Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.展开更多
A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the no...A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.展开更多
Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean...Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean current forecasting. In the present paper are discussed in depth the physical essence for such basic problems as the predictability of ocean current, the predictable currents, the dynamical basis for studying respectively the tidal current and circulation, the necessity of boundary model, the models on regions with different scales and their link. The foundations and plans to solve the problems are demonstrated. Finally a set of operational numerical forecasting system for ocean current is proposed.展开更多
This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-R...This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-Range Weather Forecasts(ECMWF)model for China from 2017 to 2022.The main conclusions are as follows.The precipitation forecast capability of the ECMWF model for China has gradually improved from 2017 to 2022.Various scores such as bias,equitable threat score(ETS),and Fractions Skill Score(FSS)showed improvements for different categories of precipitation.The bias of light rain forecasts overall adjusted towards smaller values,and the increase in forecast scores was greater in the warm season than in the cold season.The ETS for torrential rain more intense categories significantly increased,although there were large fluctuations in bias across different months.The model exhibited higher precipitation bias in most areas of North China,indicating overprediction,while it showed lower bias in South China,indicating underprediction.The ETSs indicate that the model performed better in forecasting precipitation in the northeastern part of China without the influence of climatic background conditions.Comparison of the differences between the first period and the second period of the forecast shows that the precipitation amplitude in the ECMWF forecast shifted from slight underestimation to overestimation compared to that of CMPAS05,reducing the likelihood of missing extreme precipitation events.The improvement in ETS is mainly due to the reduction in bias and false alarm rates and,more importantly,an increase in the hit rate.From 2017 to 2022,the area coverage error of model precipitation forecast relative to observations showed a decreasing trend at different scales,while the FSS showed an increasing trend,with the highest FSS observed in 2021.The ETS followed a parabolic trend with increasing neighborhood radius,with the better ETS neighborhood radius generally being larger for moderate rain and heavy rain compared with light rain and torrential rain events.展开更多
In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer ...In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer season of 2010. The verification results show that IAP-REFS is skillful for quantitative precipitation forecasts (QPF) and probabilistic QPF, but it has a systematic bias in forecasting near-surface variables. Applying a 7-day running mean bias correction to the forecasts of near-surface variables remarkably improved the reliability of the forecasts. In this study, the perturbation extraction and inflation method (proposed with the single case study in Part I) was further applied to the full season with different inflation factors. This method increased the ensemble spread and improved the accuracy of forecasts of precipitation and near-surface variables. The seasonal mean profiles of the IAP-REFS ensemble indicate good spread among ensemble members and some model biases at certain vertical levels.展开更多
A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple...A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple lateral boundary conditions, and multiple physics parameterizations with 11 ensemble members, was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China. This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework. The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts, and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region. Experiments on an actual stratiform precipitation case that occurred on 5-7 June 2009 in northern China were conducted to validate the ensemble system. The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system. The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts. Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF). However, the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables, and its influence on PQPF resolution was limited as well.展开更多
Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that...Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that in the lower troposphere the meridional wind speed and mean annual wind speed decrease, and in the lower stratosphere the temperature decreases while the meridional wind speed increases significantly. In the study area, the climate is becoming warmer and wetter in the middle lower troposphere. The expansion of urban area has great effects on the surface air temperature and the wind speed, leading to the increase of the surface air temperature, the decrease of the surface wind speed, and the increase of the area of urban high temperature zone. The quantitative equations have been established among the surface air temperature, the carbon dioxide (CO2) concentration and the specific humidity (the water vapor content). It is predicted that the future increasing rate of the surface air temperature is 0.85℃/10yr if emission concentration of CO2 remains unchanged; if emission concentration of CO2 decreases to 75%, 50% and 25%, respectively, the surface air temperature will increase 0.65℃/10yr, 0.46℃/10yr and 0.27℃/10yr, respectively. The rise of the surface air temperature in the study area is higher than that of the global mean temperature forecasted by IPCC.展开更多
Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT ...Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT in western China, using the GloSea5 operational forecast system from the UK Met Office. Useful predictions are demonstrated, with considerable skill over most regions of western China. The temporal correlation coefficients of SAT between model predictions and observations axe larger than 0.6, in both northwestern China and the Tibetan Plateau. There are two important sources of skill for these predictions in western China: interannual variation of SST in the western Pacific and the SST trend in the tropical Pacific. The tropical SST change in the recent two decades, with a warming in the western Pacific and cooling in the eastern Pacific, which is reproduced well by the forecast system, provides a large contribution to the skill of SAT in northwestern China. Additionally, the interannual variation of SST in the western Pacific gives rise to the reliable prediction of SAT around the Tibetan Plateau. It modulates convection around the Maritime Continent and further modulates the variation of SAT on the Tibetan Plateau via the surrounding circulation. This process is evident irrespective of detrending both in observations and the model predictions, and acts as a source of skill in predictions for the Tibetan Plateau. The predictability and reliability demonstrated in this study is potentially useful for climate services providing early warning of extreme climate events and could imply useful economic benefits.展开更多
This paper discusses the history and present status of different categories of biogas production in China,most of which are classified into rural household production,agriculture-based engineering production,and indus...This paper discusses the history and present status of different categories of biogas production in China,most of which are classified into rural household production,agriculture-based engineering production,and industry-based engineering production.To evaluate the future biogas production of China,five models including the Hubbert model,the Weibull model,the generalized Weng model,the H-C-Z model,and the Grey model are applied to analyze and forecast the biogas production of each province and the entire country.It is proved that those models which originated from oil research can also be applied to other energy sources.The simulation results reveal that China's total biogas production is unlikely to keep on a fast-growing trend in the next few years,mainly due to a recent decrease in rural household production,and this greatly differs from the previous goal set by the official department.In addition,China's biogas production will present a more uneven pattern among regions in the future.This paper will give preliminary explanation for the regional difference of the three biogas sectors and propose some recommendations for instituting corresponding policies and strategies to promote the development of the biogas industry in China.展开更多
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin...An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.展开更多
The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(S...The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(Scomber japonicus) in the Yellow Sea and East China Sea is an important fishing target for Chinese lighting purse seine fishery. Based on the fishery data from China's mainland large-type lighting purse seine fishery for chub mackerel during the period of 2003 to 2010 and the environmental data including sea surface temperature(SST), gradient of the sea surface temperature(GSST), sea surface height(SSH) and geostrophic velocity(GV), we attempt to establish one new forecasting model of fishing ground based on boosted regression trees. In this study, the fishing areas with fishing effort is considered as one fishing ground, and the areas with no fishing ground are randomly selected from a background field, in which the fishing areas have no records in the logbooks. The performance of the forecasting model of fishing ground is evaluated with the testing data from the actual fishing data in 2011. The results show that the forecasting model of fishing ground has a high prediction performance, and the area under receiver operating curve(AUC) attains 0.897. The predicted fishing grounds are coincided with the actual fishing locations in 2011, and the movement route is also the same as the shift of fishing vessels, which indicates that this forecasting model based on the boosted regression trees can be used to effectively forecast the fishing ground of chub mackerel in the Yellow Sea and East China Sea.展开更多
This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annu...This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annual soil erosion amount decreased by 19.09% and 43.05%reSPectively from 1958 to 1988. The results of gray forecast model presented that soil eroded areaincreased from 818.04 km2 in 1988 to 1276.69 km2 in 1995. in the meanthne the total soil erosiollamount decreased from 607.21×104 ba in 1988 to 472. 12 ×104 t/a in 1995. By comparing differentlanduse types, the soil loss modulus of the forest was the lowest with 177. 16~187.75t/km2. a, on thecontraly the bare land was the highest with 10626.76~11265.48 t/km2. a. so the high vegetationcoverage can decrease soil and water loss effectively.展开更多
Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have bee...Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.展开更多
A dynamical-statistical post-processing approach is applied to seasonal precipitation forecasts in China during the summer.The data are ensemble-mean seasonal forecasts in summer (June August) from four atmospheric ge...A dynamical-statistical post-processing approach is applied to seasonal precipitation forecasts in China during the summer.The data are ensemble-mean seasonal forecasts in summer (June August) from four atmospheric general circulation models (GCMs) in the second phase of the Canadian Historical Forecasting Project (HFP2) from 1969 to 2001.This dynamical-statistical approach is designed based on the relationship between the 500 geopotential height (Z500) forecast and the observed sea surface temperature (SST) to calibrate the precipitation forecasts.The results show that the post-processing can improve summer precipitation forecasts for many areas in China.Further examination shows that this post-processing approach is very effective in reducing the model-dependent part of the errors,which are associated with GCMs.The possible mechanisms behind the forecast's improvements are investigated.展开更多
Particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM2.5)concentration forecasting is desirable for air pollution early warning.This study proposes an improved hybrid model,named multi-feature clus...Particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM2.5)concentration forecasting is desirable for air pollution early warning.This study proposes an improved hybrid model,named multi-feature clustering decomposition(MCD)–echo state network(ESN)–particle swarm optimization(PSO),for multi-step PM2.5 concentration forecasting.The proposed model includes decomposition and optimized forecasting components.In the decomposition component,an MCD method consisting of rough sets attribute reduction(RSAR),k-means clustering(KC),and the empirical wavelet transform(EWT)is proposed for feature selection and data classification.Within the MCD,the RSAR algorithm is adopted to select significant air pollutant variables,which are then clustered by the KC algorithm.The clustered results of the PM2.5 concentration series are decomposed into several sublayers by the EWT algorithm.In the optimized forecasting component,an ESN-based predictor is built for each decomposed sublayer to complete the multi-step forecasting computation.The PSO algorithm is utilized to optimize the initial parameters of the ESN-based predictor.Real PM2.5 concentration data from four cities located in different zones in China are utilized to verify the effectiveness of the proposed model.The experimental results indicate that the proposed forecasting model is suitable for the multi-step high-precision forecasting of PM2.5 concentrations and has better performance than the benchmark models.展开更多
In order to satisfy the increasing demand for the marine forecasting capacity,the Bohai Sea,the Yellow Sea and the East China Sea Operational Oceanography Forecasting System(BYEOFS)has been upgraded and improved to Ve...In order to satisfy the increasing demand for the marine forecasting capacity,the Bohai Sea,the Yellow Sea and the East China Sea Operational Oceanography Forecasting System(BYEOFS)has been upgraded and improved to Version 2.0.Based on the Regional Ocean Modeling System(ROMS),a series of comparative experiments were conducted during the improvement process,including correcting topography,changing sea surface atmospheric forcing mode,adjusting open boundary conditions,and considering atmospheric pressure correction.(1)After the topography correction,the volume transport and meridional velocity maximum of Yellow Sea Warm Current increase obviously and the unreasonable bending of its axis around 36.1°N,123.5°E disappears.(2)After the change of sea surface forcing mode,an effective negative feedback mechanism is formed between predicted sea surface temperature(SST)by the ocean model and sea surface radiation fluxes fields.The simulation errors of SST decreased significantly,and the annual average of root-mean-square error(RMSE)decreased by about 18%.(3)The change of the eastern lateral boundary condition of baroclinic velocity from mixed Radiation-Nudging to Clamped makes the unreasonable westward current in Tsushima Strait disappear.(4)The adding of mean sea level pressure correction option which forms the mean sea level gradient from the Bohai Sea and the Yellow Sea to the western Pacific in winter and autumn is helpful to increasing the fluctuation of SLA and outflow of the Yellow Sea when the cold high air pressure system controls the Yellow Sea area.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42375062 and 42275158)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)the Natural Science Foundation of Gansu Province(Grant No.22JR5RF1080)。
文摘It is fundamental and useful to investigate how deep learning forecasting models(DLMs)perform compared to operational oceanography forecast systems(OFSs).However,few studies have intercompared their performances using an identical reference.In this study,three physically reasonable DLMs are implemented for the forecasting of the sea surface temperature(SST),sea level anomaly(SLA),and sea surface velocity in the South China Sea.The DLMs are validated against both the testing dataset and the“OceanPredict”Class 4 dataset.Results show that the DLMs'RMSEs against the latter increase by 44%,245%,302%,and 109%for SST,SLA,current speed,and direction,respectively,compared to those against the former.Therefore,different references have significant influences on the validation,and it is necessary to use an identical and independent reference to intercompare the DLMs and OFSs.Against the Class 4 dataset,the DLMs present significantly better performance for SLA than the OFSs,and slightly better performances for other variables.The error patterns of the DLMs and OFSs show a high degree of similarity,which is reasonable from the viewpoint of predictability,facilitating further applications of the DLMs.For extreme events,the DLMs and OFSs both present large but similar forecast errors for SLA and current speed,while the DLMs are likely to give larger errors for SST and current direction.This study provides an evaluation of the forecast skills of commonly used DLMs and provides an example to objectively intercompare different DLMs.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.41975137,42175012,and 41475097)the National Key Research and Development Program(Grant No.2018YFF0300103).
文摘Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.
基金National Key Research and Development Program of China (2021YFC3000802)National Natural Science Foundation of China (41875059)The Open Research Program of the State Key Laboratory of Severe Weather (2021LASW-A04)。
文摘This study examines the spatio-temporal characteristics of heavy precipitation forecasts in eastern China from the European Centre for Medium-Range Weather Forecasts(ECMWF) using the time-domain version of the Method for Object-based Diagnostic Evaluation(MODE-TD). A total of 23 heavy rainfall cases occurring between 2018 and 2021 are selected for analysis. Using Typhoon “Rumbia” as a case study, the paper illustrates how the MODE-TD method assesses the overall simulation capability of models for the life history of precipitation systems. The results of multiple tests with different parameter configurations reveal that the model underestimates the number of objects’ forecasted precipitation tracks, particularly at smaller radii. Additionally, the analysis based on centroid offset and area ratio tests for different classified precipitation objects indicates that the model performs better in predicting large-area, fast-moving, and longlifespan precipitation objects. Conversely, it tends to have less accurate predictions for small-area, slow-moving, and shortlifespan precipitation objects. In terms of temporal characteristics, the model overestimates the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. In terms of temporal characteristics, the model tends to overestimate the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. Overall, the model provides more accurate predictions for the duration and dissipation of precipitation objects with large-area or long-lifespan(such as typhoon precipitation) while having large prediction errors for precipitation objects with small-area or short-lifespan. Furthermore, the model’s simulation results regarding the generation of precipitation objects show that it performs relatively well in simulating the generation of large-area and fast-moving precipitation objects. However, there are significant differences in the forecasted generation of small-area and slow-moving precipitation objects after 9 hours.
基金National Natural Science Foundation of Ningbo City(2013A610124)Ningbo Planning Project of Science and Technology(2012C50044)Nanhai Disaster Mitigation Fund of Hainan Provincial Meteorological Bureau(NH2008ZY02)
文摘Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.
基金supported by a project of the National Natural Science Foundation of China (Grant No. 41305099)
文摘A running mean bias (RMB) correction ap- proach was applied to the forecasts of near-surface variables in a seasonal short-range ensemble forecasting experiment with 57 consecutive cases during summer 2010 in the northern China region. To determine a proper training window length for calculating RMB, window lengths from 2 to 20 days were evaluated, and 16 days was taken as an optimal window length, since it receives most of the benefit from extending the window length. The raw and 16-day RMB corrected ensembles were then evaluated for their ensemble mean forecast skills. The results show that the raw ensemble has obvious bias in all near-surface variables. The RMB correction can remove the bias reasonably well, and generate an unbiased ensemble. The bias correction not only reduces the ensemble mean forecast error, but also results in a better spreaderror relationship. Moreover, two methods for computing calibrated probabilistic forecast (PF) were also evaluated through the 57 case dates: 1) using the relative frequency from the RMB-eorrected ensemble; 2) computing the forecasting probabilities based on a historical rank histogram. The first method outperforms the second one, as it can improve both the reliability and the resolution of the PFs, while the second method only has a small effect on the reliability, indicating the necessity and importance of removing the systematic errors from the ensemble.
文摘Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean current forecasting. In the present paper are discussed in depth the physical essence for such basic problems as the predictability of ocean current, the predictable currents, the dynamical basis for studying respectively the tidal current and circulation, the necessity of boundary model, the models on regions with different scales and their link. The foundations and plans to solve the problems are demonstrated. Finally a set of operational numerical forecasting system for ocean current is proposed.
基金Special Innovation and Development Program of China Meteorological Administration(CXFZ2022J023)Projects in Key Areas of Social Development in Shaanxi Province(2024SF-YBXM-556)Shaanxi Province Basic Research Pro-gram of Natural Science(2023-JC-QN-0285)。
文摘This study used the China Meteorological Administration(CMA)three-source fusion gridded precipitation analysis data as a reference to evaluate the precipitation forecast performance of the European Centre for Medium-Range Weather Forecasts(ECMWF)model for China from 2017 to 2022.The main conclusions are as follows.The precipitation forecast capability of the ECMWF model for China has gradually improved from 2017 to 2022.Various scores such as bias,equitable threat score(ETS),and Fractions Skill Score(FSS)showed improvements for different categories of precipitation.The bias of light rain forecasts overall adjusted towards smaller values,and the increase in forecast scores was greater in the warm season than in the cold season.The ETS for torrential rain more intense categories significantly increased,although there were large fluctuations in bias across different months.The model exhibited higher precipitation bias in most areas of North China,indicating overprediction,while it showed lower bias in South China,indicating underprediction.The ETSs indicate that the model performed better in forecasting precipitation in the northeastern part of China without the influence of climatic background conditions.Comparison of the differences between the first period and the second period of the forecast shows that the precipitation amplitude in the ECMWF forecast shifted from slight underestimation to overestimation compared to that of CMPAS05,reducing the likelihood of missing extreme precipitation events.The improvement in ETS is mainly due to the reduction in bias and false alarm rates and,more importantly,an increase in the hit rate.From 2017 to 2022,the area coverage error of model precipitation forecast relative to observations showed a decreasing trend at different scales,while the FSS showed an increasing trend,with the highest FSS observed in 2021.The ETS followed a parabolic trend with increasing neighborhood radius,with the better ETS neighborhood radius generally being larger for moderate rain and heavy rain compared with light rain and torrential rain events.
基金supported by a project of the National Natural Science Foundation of China (Grant No. 40875079)
文摘In this study, the Institute of Atmospheric Physics, Chinese Academy of Sciences - regional ensemble forecast system (IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer season of 2010. The verification results show that IAP-REFS is skillful for quantitative precipitation forecasts (QPF) and probabilistic QPF, but it has a systematic bias in forecasting near-surface variables. Applying a 7-day running mean bias correction to the forecasts of near-surface variables remarkably improved the reliability of the forecasts. In this study, the perturbation extraction and inflation method (proposed with the single case study in Part I) was further applied to the full season with different inflation factors. This method increased the ensemble spread and improved the accuracy of forecasts of precipitation and near-surface variables. The seasonal mean profiles of the IAP-REFS ensemble indicate good spread among ensemble members and some model biases at certain vertical levels.
基金supported by the project of the NSFC (Grants No. 40875079)
文摘A single-model, short-range, ensemble forecasting system (Institute of Atmospheric Physics, Regional Ensemble Forecast System, IAP REFS) with 15-km grid spacing, configured with multiple initial conditions, multiple lateral boundary conditions, and multiple physics parameterizations with 11 ensemble members, was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China. This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework. The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts, and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region. Experiments on an actual stratiform precipitation case that occurred on 5-7 June 2009 in northern China were conducted to validate the ensemble system. The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system. The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts. Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF). However, the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables, and its influence on PQPF resolution was limited as well.
基金Under the auspices of Major State Basic Research Development Program of China (No. 2010CB950900)Technology Innovation Program of Harbin City (No. 2007RFXXS029)
文摘Based on sounding data from 1975 to 2005 and TM/ETM+ remote sensing images in 1989, 2001 and 2007, the climate changes in Harbin City, Northeast China in recent 30 years were analyzed and forecasted. Results show that in the lower troposphere the meridional wind speed and mean annual wind speed decrease, and in the lower stratosphere the temperature decreases while the meridional wind speed increases significantly. In the study area, the climate is becoming warmer and wetter in the middle lower troposphere. The expansion of urban area has great effects on the surface air temperature and the wind speed, leading to the increase of the surface air temperature, the decrease of the surface wind speed, and the increase of the area of urban high temperature zone. The quantitative equations have been established among the surface air temperature, the carbon dioxide (CO2) concentration and the specific humidity (the water vapor content). It is predicted that the future increasing rate of the surface air temperature is 0.85℃/10yr if emission concentration of CO2 remains unchanged; if emission concentration of CO2 decreases to 75%, 50% and 25%, respectively, the surface air temperature will increase 0.65℃/10yr, 0.46℃/10yr and 0.27℃/10yr, respectively. The rise of the surface air temperature in the study area is higher than that of the global mean temperature forecasted by IPCC.
基金supported by the National Key R&D Program of China(Grant No.2016YFA0600603)the National Natural Science Foundation of China(Grant Nos.U1502233,41320104007 and 41775083)supported by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund
文摘Variations of surface air temperature (SAT) are key in affecting the hydrological cycle, ecosystems and agriculture in western China in summer. This study assesses the seasonal forecast skill and reliability of SAT in western China, using the GloSea5 operational forecast system from the UK Met Office. Useful predictions are demonstrated, with considerable skill over most regions of western China. The temporal correlation coefficients of SAT between model predictions and observations axe larger than 0.6, in both northwestern China and the Tibetan Plateau. There are two important sources of skill for these predictions in western China: interannual variation of SST in the western Pacific and the SST trend in the tropical Pacific. The tropical SST change in the recent two decades, with a warming in the western Pacific and cooling in the eastern Pacific, which is reproduced well by the forecast system, provides a large contribution to the skill of SAT in northwestern China. Additionally, the interannual variation of SST in the western Pacific gives rise to the reliable prediction of SAT around the Tibetan Plateau. It modulates convection around the Maritime Continent and further modulates the variation of SAT on the Tibetan Plateau via the surrounding circulation. This process is evident irrespective of detrending both in observations and the model predictions, and acts as a source of skill in predictions for the Tibetan Plateau. The predictability and reliability demonstrated in this study is potentially useful for climate services providing early warning of extreme climate events and could imply useful economic benefits.
基金supported by the National Natural Science Foundation of China (Grant No.71171102)
文摘This paper discusses the history and present status of different categories of biogas production in China,most of which are classified into rural household production,agriculture-based engineering production,and industry-based engineering production.To evaluate the future biogas production of China,five models including the Hubbert model,the Weibull model,the generalized Weng model,the H-C-Z model,and the Grey model are applied to analyze and forecast the biogas production of each province and the entire country.It is proved that those models which originated from oil research can also be applied to other energy sources.The simulation results reveal that China's total biogas production is unlikely to keep on a fast-growing trend in the next few years,mainly due to a recent decrease in rural household production,and this greatly differs from the previous goal set by the official department.In addition,China's biogas production will present a more uneven pattern among regions in the future.This paper will give preliminary explanation for the regional difference of the three biogas sectors and propose some recommendations for instituting corresponding policies and strategies to promote the development of the biogas industry in China.
基金China-Korea Cooperation Project on the development of oceanic monitoring and prediction system on nuclear safetythe Project of the National Programme on Global Change and Air-sea Interaction under contract No.GASI-03-IPOVAI-05
文摘An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.
基金The National High Technology Research and Development Program(863 Program)of China under contract No.2012AA092301the Public Science and Technology Research Funds Projects of Ocean under contract No.20155014+1 种基金the National Key Technology Research and Development Program of China under contract No.2013BAD13B01the Innovation Program of Shanghai Municipal Education Commissionof China under contract No.14ZZ147
文摘The pelagic species is closely related to the marine environmental factors, and establishment of forecasting model of fishing ground with high accuracy is an important content for pelagic fishery. The chub mackerel(Scomber japonicus) in the Yellow Sea and East China Sea is an important fishing target for Chinese lighting purse seine fishery. Based on the fishery data from China's mainland large-type lighting purse seine fishery for chub mackerel during the period of 2003 to 2010 and the environmental data including sea surface temperature(SST), gradient of the sea surface temperature(GSST), sea surface height(SSH) and geostrophic velocity(GV), we attempt to establish one new forecasting model of fishing ground based on boosted regression trees. In this study, the fishing areas with fishing effort is considered as one fishing ground, and the areas with no fishing ground are randomly selected from a background field, in which the fishing areas have no records in the logbooks. The performance of the forecasting model of fishing ground is evaluated with the testing data from the actual fishing data in 2011. The results show that the forecasting model of fishing ground has a high prediction performance, and the area under receiver operating curve(AUC) attains 0.897. The predicted fishing grounds are coincided with the actual fishing locations in 2011, and the movement route is also the same as the shift of fishing vessels, which indicates that this forecasting model based on the boosted regression trees can be used to effectively forecast the fishing ground of chub mackerel in the Yellow Sea and East China Sea.
文摘This paper StUdies soil erosion dynamics in the typical region of southem China based onremote sensing, GIS tecndques and gray forecast model. The resultS of survey on Xingguo countyshown the soil eroded area and annual soil erosion amount decreased by 19.09% and 43.05%reSPectively from 1958 to 1988. The results of gray forecast model presented that soil eroded areaincreased from 818.04 km2 in 1988 to 1276.69 km2 in 1995. in the meanthne the total soil erosiollamount decreased from 607.21×104 ba in 1988 to 472. 12 ×104 t/a in 1995. By comparing differentlanduse types, the soil loss modulus of the forest was the lowest with 177. 16~187.75t/km2. a, on thecontraly the bare land was the highest with 10626.76~11265.48 t/km2. a. so the high vegetationcoverage can decrease soil and water loss effectively.
基金The National Key Research and Development Program of China under contract No.2018YFC1406206the National Natural Science Foundation of China under contract No.41876014.
文摘Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.
基金funded by the National Natural Sci-ence Foundation of China (Grant No. 40805018)
文摘A dynamical-statistical post-processing approach is applied to seasonal precipitation forecasts in China during the summer.The data are ensemble-mean seasonal forecasts in summer (June August) from four atmospheric general circulation models (GCMs) in the second phase of the Canadian Historical Forecasting Project (HFP2) from 1969 to 2001.This dynamical-statistical approach is designed based on the relationship between the 500 geopotential height (Z500) forecast and the observed sea surface temperature (SST) to calibrate the precipitation forecasts.The results show that the post-processing can improve summer precipitation forecasts for many areas in China.Further examination shows that this post-processing approach is very effective in reducing the model-dependent part of the errors,which are associated with GCMs.The possible mechanisms behind the forecast's improvements are investigated.
基金The study is fully supported by the National Natural Science Foundation of China(61873283)the Changsha Science&Technology Project(KQ1707017)the Innovation Driven Project of the Central South University(2019CX005).
文摘Particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM2.5)concentration forecasting is desirable for air pollution early warning.This study proposes an improved hybrid model,named multi-feature clustering decomposition(MCD)–echo state network(ESN)–particle swarm optimization(PSO),for multi-step PM2.5 concentration forecasting.The proposed model includes decomposition and optimized forecasting components.In the decomposition component,an MCD method consisting of rough sets attribute reduction(RSAR),k-means clustering(KC),and the empirical wavelet transform(EWT)is proposed for feature selection and data classification.Within the MCD,the RSAR algorithm is adopted to select significant air pollutant variables,which are then clustered by the KC algorithm.The clustered results of the PM2.5 concentration series are decomposed into several sublayers by the EWT algorithm.In the optimized forecasting component,an ESN-based predictor is built for each decomposed sublayer to complete the multi-step forecasting computation.The PSO algorithm is utilized to optimize the initial parameters of the ESN-based predictor.Real PM2.5 concentration data from four cities located in different zones in China are utilized to verify the effectiveness of the proposed model.The experimental results indicate that the proposed forecasting model is suitable for the multi-step high-precision forecasting of PM2.5 concentrations and has better performance than the benchmark models.
基金The National Key Research and Development Program of China under contract No.2017YFA0604203the National Natural Science Foundation of China under contract Nos 42176029 and 41806003。
文摘In order to satisfy the increasing demand for the marine forecasting capacity,the Bohai Sea,the Yellow Sea and the East China Sea Operational Oceanography Forecasting System(BYEOFS)has been upgraded and improved to Version 2.0.Based on the Regional Ocean Modeling System(ROMS),a series of comparative experiments were conducted during the improvement process,including correcting topography,changing sea surface atmospheric forcing mode,adjusting open boundary conditions,and considering atmospheric pressure correction.(1)After the topography correction,the volume transport and meridional velocity maximum of Yellow Sea Warm Current increase obviously and the unreasonable bending of its axis around 36.1°N,123.5°E disappears.(2)After the change of sea surface forcing mode,an effective negative feedback mechanism is formed between predicted sea surface temperature(SST)by the ocean model and sea surface radiation fluxes fields.The simulation errors of SST decreased significantly,and the annual average of root-mean-square error(RMSE)decreased by about 18%.(3)The change of the eastern lateral boundary condition of baroclinic velocity from mixed Radiation-Nudging to Clamped makes the unreasonable westward current in Tsushima Strait disappear.(4)The adding of mean sea level pressure correction option which forms the mean sea level gradient from the Bohai Sea and the Yellow Sea to the western Pacific in winter and autumn is helpful to increasing the fluctuation of SLA and outflow of the Yellow Sea when the cold high air pressure system controls the Yellow Sea area.