Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how ...Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.展开更多
Dynamics of major picoplankton groups, Synechococcus (Syn), Prochlorococcus (Pro), picoeukaryotes (Euk) and heterotrophic bacteria (Bact) was investigated by flow cytometry for the first time in the Nansha Islands are...Dynamics of major picoplankton groups, Synechococcus (Syn), Prochlorococcus (Pro), picoeukaryotes (Euk) and heterotrophic bacteria (Bact) was investigated by flow cytometry for the first time in the Nansha Islands area in the South China Sea. Averaged over the whole investigation area, depth-weighted integrated cell abundance (DWA) of Syn, Pro, Euk and Bact was 1.6 (0.4-5.7)×103, 5.4 (0.1-7.3)×104, 0.7 (0.2-2.2)×103, and 2.3 (1.4-3.2)×105 cells/mL respectively. Picoautotrophic cell abundance was low in the northwest part of the Nansha Islands where surface water temperature was low and the upper mixed layer was shallow. Concurrently, a surface maximum vertical distribution pattern was observed in this area. While in the southeast and east zones where temperatures were relatively higher and nitraclines were deeper, picoplankton is abundant and a subsurface maximum around 50-75 m is observed. Coupling of horizontal and vertical distribution patterns of picoplankton abundance and hydrological status was found, suggesting a strong influence of currents and water column structure on picoplankton distribution in the investigation area. Contrary to that in the shelf water in the East China Sea, the relationship between Pro and Bact in the Nansha Islands area in the South China Sea was not significantly negative but weakly positive. Moreover, a similar distribution pattern of Syn and Pro was observed. Possible reasons for these differences in the two marine regimes were discussed.展开更多
It is exceedingly important to estimate the stability of coral reefs. In recent years, growing construction projects have been carried out on the reef flat in the South China Sea. As a special marine geotechnical medi...It is exceedingly important to estimate the stability of coral reefs. In recent years, growing construction projects have been carried out on the reef flat in the South China Sea. As a special marine geotechnical medium, it is made of the reef debris underwent overwhelmingly long geological age. Reefs grow thickly on the carbonate platform after the Late Oligocene and have five to six main sedimentary facies. It can be used as a recorder to measure the occurrence time of recent earthquake. A model of reef body is presented to study the influence of earthquakes according to the geological structure characteristic of reefs in the Nansha Islands. Furthermore, Geo Studio is used to simulate stress and deformation situations within it under various earthquake intensities. A safety factor is calculated by the limit equilibrium method, and the possible scenarios of earthquake-induced landslides and sliding scale are defined with a Newmark sliding block method, as well as stress distribution and deformation behaviors. Therefore, the numerical results suggest that the connections between the coral reef and the earthquake are as follows:(1) the reef body has a good stability under self-gravity state;(2) after the earthquake, it may cause slope's instability and bring out slumping when the safety factor is smaller than 1(FS〈1);(3) the safety factor decreases with the increasing earthquake intensity, and fluctuates around a particular value after a while;and(4) as a new developed part of the reef, the smaller shallow landslide will be easily subject to collapse caused by the earthquake. It is concluded that it is feasible to provide a reference for evaluating the stability of coral reef using a geotechnical engineering simulation method. This can help the engineering constructions in the South China Sea.展开更多
Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are disc...Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are discussed. The vertical distribution of iron and manganese in the sediments results from reduction, diffusion, and redeposition of manganese (or iron) oxide and hydroxide in the sediment. There are the maxima of iron and manganese in solid phase in the top of the sediment, which is caused by the penetration of O2 and the upward flux of Mn2+ ( or Fe2+ ). Manganese bacteria play a very important role in the cycle of solid-phase iron and manganese in the ocean environment. Manganese bacteria oxidize Mn2+ ( or Fe2+ ) in dissolved state to Mn4+ ( or Fe3+ ) in oxidized state under the aerobic condition, whereas they reduce iron and manganese in anaerobic conditions.展开更多
The diffusion attenuation coefficient for downwelling irradiance, Kd (490), is an important optical parameter of seawater. The optical property, Kd (490), around Nansha Islands in the South China Sea was analyzed base...The diffusion attenuation coefficient for downwelling irradiance, Kd (490), is an important optical parameter of seawater. The optical property, Kd (490), around Nansha Islands in the South China Sea was analyzed based on optical data profiles measured with SPMR ( SeaWiFS Profiling Multichannel Radiometer ) and SMSR ( SeaWiFS Multichannel Surface Reference ) instrument in April and May, 1999. The results show that Kd (490) is closely correlated with chlorophyll-a concentration, Cchl.a, and that the vertical distribution of Kd (490) shows the strong stratification of the water column in this area. Kd (490) has a similar vertical co-variation as KL (490), the diffusive attenuation coefficient for upwelling radiance. Both coefficients increase with depth in the upper layer, where KL (490) is greater than Kd (490); and after a depth, approximatively at the chlorophyll maximum, they decrease with depth, with the former being smaller than the latter.展开更多
Ths paper proves that it is the Chinese people that are the eariiest to discover the Nansha Islands in history, according to the irrefdsble facts from historical records, mpaphical discovenes, the opening of sailing l...Ths paper proves that it is the Chinese people that are the eariiest to discover the Nansha Islands in history, according to the irrefdsble facts from historical records, mpaphical discovenes, the opening of sailing lines and the nandng of places.展开更多
A reduced vertically integrated upper mixed layer model is set up to numerically study the thermodynamic process of the formation of the 'Nansha warm water'(NWW) in the Nansha Islands sea areas in spring. Acco...A reduced vertically integrated upper mixed layer model is set up to numerically study the thermodynamic process of the formation of the 'Nansha warm water'(NWW) in the Nansha Islands sea areas in spring. According to the numerical experiments, it is shown that, in spring, the formation of the NWW is mainly due to the sea surface net heat flux and the local weak current strength; the contribution from temperature advection transport and warm water exchange with the outer seas (Sulu Sea or south of Sunda shelf) is very little. In the sea areas where the current is strong, the advection may also play an important role in the temperature field.展开更多
Two species of Nassarius Duméril, 1805 from the South China Sea are described and illustrated. The specimens are in the Nassariidae collection of the Marine Biological Museum of Chinese Academy of Sciences, Qingd...Two species of Nassarius Duméril, 1805 from the South China Sea are described and illustrated. The specimens are in the Nassariidae collection of the Marine Biological Museum of Chinese Academy of Sciences, Qingdao.Nassarius concavus sp. nov., from the sandy bottom at a depth of 180 m, resembles Nassarius glabrus Zhang and Zhang, 2014 in general shell morphology, but differs from the latter in having a smaller, more slender adult shell without axial ribs on the upper teleoconch whorls. Nassarius nanshaensis sp. nov., from the Nansha Islands at a depth of 56–147 m, is similar to Nassarius maxiutongi Zhang, Zhang and Li, 2019 in the shell sculpture, but differs in having a more slender shell with a higher spire, and fewer cusps on the rachidian tooth(9–11 vs. 13–17).展开更多
BEFORE moving to China,my favorite hideaway was Hawaii,so I was delighted to learn China has its own Hawaii–southernmost Hainan Province.A Han Dynasty(206 BC-AD 220)emperor established a military garrison on Hainan I...BEFORE moving to China,my favorite hideaway was Hawaii,so I was delighted to learn China has its own Hawaii–southernmost Hainan Province.A Han Dynasty(206 BC-AD 220)emperor established a military garrison on Hainan Island,the largest island of Hainan Province,in 110 BC.Sun Yatsen recommended the establishment of a province in the region in 1906,but this did not happen until 1988,the year we moved to China.展开更多
Meiji (Mischief) coral atoll, in Nansha (Spratly) Islands, South China Sea, consists of an annular reef rim surrounding a central lagoon. On the atoll rim there are either protuberant 'motu' (small coral patch...Meiji (Mischief) coral atoll, in Nansha (Spratly) Islands, South China Sea, consists of an annular reef rim surrounding a central lagoon. On the atoll rim there are either protuberant 'motu' (small coral patch reefs on the rim of atoll) islets or lower sandy cays that contain modern microbialite deposits on the corals in pinnacles and surrounding bottoms of the atoll. Microbialites, including villiform, hairy, and thin spine growth forms, as well as gelatinous masses, mats and encrustation, developed on coral colonies and atoll rim sediments between 0 and 15 m deep-water settings. The microbialites were produced by natural populations of filamentous cyanobacteria and grew on (1) bulbous corals together with Acropora sp., (2) on massive colonies of Galaxea fascicularis, (3) on dead Montipora digitata, and (4) on dead Acropora teres, some hairy microbialite growing around broken coral branches. This study demonstrates that microbial carbonates are developed in coral reefs of South China Sea and indicates that microbial processes may be important in the construction of modern reef systems. The results have significance in the determination of nature and composition in microorganisms implied in the formation ancient microbialites, and permit evaluation of the importance of microbial deposits in mo-dern coral reefs and of 'microbialites' in biogeochemical cycles of modern coral reef systems. The re-sults also provide evidence of modern analogues for ancient microbialites in shallow-water settings, and combine with sedimentological studies of ancient microbialites to understand their controls.展开更多
Coral bleaching,characterized by a significant loss of symbiotic zooxanthellae,is the primary cause of mass coral mortality and reef degradation throughout the world.The characteristics,processes,and resistance of cor...Coral bleaching,characterized by a significant loss of symbiotic zooxanthellae,is the primary cause of mass coral mortality and reef degradation throughout the world.The characteristics,processes,and resistance of corals to bleaching varies significantly and is dependent on environmental conditions.We documented a mass coral bleaching event in June 2007 at the Meiji and Zhubi Reefs,Nansha Islands (NS),South China Sea using ecological surveys and measurement of coral zooxanthellae density and sea surface temperatures (SST).More than 35 species of corals (between 0-20 m in depth) were bleached.These bleached corals accounted for 15.6% of total corals in the investigated quadrats.The branching corals Pocillopora and Acropora were the most vulnerable species whereas the massive corals Porites and Favia were more tolerant of the high SSTs.Surprisingly,we found no evidence of bleaching in Agariciidae corals suggesting that this family is resistant to thermal stresses.The bleached corals had lost 72%-90% of their symbiotic zooxanthellae.Furthermore,corals that had no visual signs of bleaching had also lost 31%-53% of their zooxanthellae suggesting that most corals were experiencing the early stage of bleaching.The monthly mean SST during June 2007 was 30.8°C,the highest since 1998.Based on measurements of SST and the Hotspots and DHW data (NOAA),we conclude that it the extremely high SSTs triggered this coral bleaching event.Our results suggest that the previously accepted temperature thresholds used to predict coral bleaching based on satellite data are likely to underestimate the extent and intensity of coral bleaching,at least in the NS.展开更多
As is well-known, Nansha Islands in the South China Sea(SCS) are of important strategic position and invaluable ecological value. Therefore, many attentions are paid to either the political and legal aspects of expose...As is well-known, Nansha Islands in the South China Sea(SCS) are of important strategic position and invaluable ecological value. Therefore, many attentions are paid to either the political and legal aspects of exposed features that matter in the maritime delimitation, or the physical and geographical characteristics of coral reefs that are the predominant structures of these islands. However, it seems that they consistently lose the connection of sciences and humanities in the research of Nansha Islands in the SCS. In this study, we carry out a combinative research, based on remote sensing data using satellite imagery analysis together with historical materials using literature investigation, so as to reconsider to the geographical characteristics of Nansha Islands from a standpoint of the United Nations Convention on the Law of the Sea(UNCLOS). After thoroughly appraising the statuses of these newly formed sand cays, several high tide features of Nansha Islands are identified. By means of the comparison of satellite images coupled with reference to nautical charting and sailing directions during different time periods, we can conclude that the statuses of these high tide features formed on reef platforms are relatively stable due to the growth of reef-building organisms although their migration patterns are subject to external disturbances, and hence the cursory judgment pursuant to the relevant provisions of the UNCLOS about whether a coral reef belongs to a low tide elevation only based on outdated references or ex parte evidences is not reliable. Moreover, it is accordingly justified to improve further development and perfection of the maritime legislation by eliminating such ambiguities with the growth of coral reefs and the evolution of sand cays being both taken into account.展开更多
基金Under the auspices of National Key Research and Development Program of China (No.2022YFC3103103)。
文摘Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.
文摘Dynamics of major picoplankton groups, Synechococcus (Syn), Prochlorococcus (Pro), picoeukaryotes (Euk) and heterotrophic bacteria (Bact) was investigated by flow cytometry for the first time in the Nansha Islands area in the South China Sea. Averaged over the whole investigation area, depth-weighted integrated cell abundance (DWA) of Syn, Pro, Euk and Bact was 1.6 (0.4-5.7)×103, 5.4 (0.1-7.3)×104, 0.7 (0.2-2.2)×103, and 2.3 (1.4-3.2)×105 cells/mL respectively. Picoautotrophic cell abundance was low in the northwest part of the Nansha Islands where surface water temperature was low and the upper mixed layer was shallow. Concurrently, a surface maximum vertical distribution pattern was observed in this area. While in the southeast and east zones where temperatures were relatively higher and nitraclines were deeper, picoplankton is abundant and a subsurface maximum around 50-75 m is observed. Coupling of horizontal and vertical distribution patterns of picoplankton abundance and hydrological status was found, suggesting a strong influence of currents and water column structure on picoplankton distribution in the investigation area. Contrary to that in the shelf water in the East China Sea, the relationship between Pro and Bact in the Nansha Islands area in the South China Sea was not significantly negative but weakly positive. Moreover, a similar distribution pattern of Syn and Pro was observed. Possible reasons for these differences in the two marine regimes were discussed.
基金The National Basic Research Program(973 Program)of China under contract No.2013CB956104the National Natural Science Foundation of China under contract No.41376063the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA13000000
文摘It is exceedingly important to estimate the stability of coral reefs. In recent years, growing construction projects have been carried out on the reef flat in the South China Sea. As a special marine geotechnical medium, it is made of the reef debris underwent overwhelmingly long geological age. Reefs grow thickly on the carbonate platform after the Late Oligocene and have five to six main sedimentary facies. It can be used as a recorder to measure the occurrence time of recent earthquake. A model of reef body is presented to study the influence of earthquakes according to the geological structure characteristic of reefs in the Nansha Islands. Furthermore, Geo Studio is used to simulate stress and deformation situations within it under various earthquake intensities. A safety factor is calculated by the limit equilibrium method, and the possible scenarios of earthquake-induced landslides and sliding scale are defined with a Newmark sliding block method, as well as stress distribution and deformation behaviors. Therefore, the numerical results suggest that the connections between the coral reef and the earthquake are as follows:(1) the reef body has a good stability under self-gravity state;(2) after the earthquake, it may cause slope's instability and bring out slumping when the safety factor is smaller than 1(FS〈1);(3) the safety factor decreases with the increasing earthquake intensity, and fluctuates around a particular value after a while;and(4) as a new developed part of the reef, the smaller shallow landslide will be easily subject to collapse caused by the earthquake. It is concluded that it is feasible to provide a reference for evaluating the stability of coral reef using a geotechnical engineering simulation method. This can help the engineering constructions in the South China Sea.
基金supported by the National Natural Science Foundation of China(contract No.49706065)the Special Foundation of National Social Common Wealth Research(contract No.2001DIA50041)ZKCX2-SW-212 by Chinese Academy of Science
文摘Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are discussed. The vertical distribution of iron and manganese in the sediments results from reduction, diffusion, and redeposition of manganese (or iron) oxide and hydroxide in the sediment. There are the maxima of iron and manganese in solid phase in the top of the sediment, which is caused by the penetration of O2 and the upward flux of Mn2+ ( or Fe2+ ). Manganese bacteria play a very important role in the cycle of solid-phase iron and manganese in the ocean environment. Manganese bacteria oxidize Mn2+ ( or Fe2+ ) in dissolved state to Mn4+ ( or Fe3+ ) in oxidized state under the aerobic condition, whereas they reduce iron and manganese in anaerobic conditions.
基金This work was jointly supported by project KZCX2-202 from CAS the project of 818-06-03 from national 863 program and project 97-926-07 of national special program for science and technology.
文摘The diffusion attenuation coefficient for downwelling irradiance, Kd (490), is an important optical parameter of seawater. The optical property, Kd (490), around Nansha Islands in the South China Sea was analyzed based on optical data profiles measured with SPMR ( SeaWiFS Profiling Multichannel Radiometer ) and SMSR ( SeaWiFS Multichannel Surface Reference ) instrument in April and May, 1999. The results show that Kd (490) is closely correlated with chlorophyll-a concentration, Cchl.a, and that the vertical distribution of Kd (490) shows the strong stratification of the water column in this area. Kd (490) has a similar vertical co-variation as KL (490), the diffusive attenuation coefficient for upwelling radiance. Both coefficients increase with depth in the upper layer, where KL (490) is greater than Kd (490); and after a depth, approximatively at the chlorophyll maximum, they decrease with depth, with the former being smaller than the latter.
文摘Ths paper proves that it is the Chinese people that are the eariiest to discover the Nansha Islands in history, according to the irrefdsble facts from historical records, mpaphical discovenes, the opening of sailing lines and the nandng of places.
基金This work was supported by the Knowledge Innovation Frontier Project of South China Sea Institute of OceanologyChinese Academy of Sciences under contract No,LYQY200310+1 种基金National Science Foundation of China under contract Nos 40376003 and 40276004 National Special Key Project of China under contract No.2001DIA50041.
文摘A reduced vertically integrated upper mixed layer model is set up to numerically study the thermodynamic process of the formation of the 'Nansha warm water'(NWW) in the Nansha Islands sea areas in spring. According to the numerical experiments, it is shown that, in spring, the formation of the NWW is mainly due to the sea surface net heat flux and the local weak current strength; the contribution from temperature advection transport and warm water exchange with the outer seas (Sulu Sea or south of Sunda shelf) is very little. In the sea areas where the current is strong, the advection may also play an important role in the temperature field.
基金The National Natural Science Foundation of China under contract Nos 31750002 and 41606191。
文摘Two species of Nassarius Duméril, 1805 from the South China Sea are described and illustrated. The specimens are in the Nassariidae collection of the Marine Biological Museum of Chinese Academy of Sciences, Qingdao.Nassarius concavus sp. nov., from the sandy bottom at a depth of 180 m, resembles Nassarius glabrus Zhang and Zhang, 2014 in general shell morphology, but differs from the latter in having a smaller, more slender adult shell without axial ribs on the upper teleoconch whorls. Nassarius nanshaensis sp. nov., from the Nansha Islands at a depth of 56–147 m, is similar to Nassarius maxiutongi Zhang, Zhang and Li, 2019 in the shell sculpture, but differs in having a more slender shell with a higher spire, and fewer cusps on the rachidian tooth(9–11 vs. 13–17).
文摘BEFORE moving to China,my favorite hideaway was Hawaii,so I was delighted to learn China has its own Hawaii–southernmost Hainan Province.A Han Dynasty(206 BC-AD 220)emperor established a military garrison on Hainan Island,the largest island of Hainan Province,in 110 BC.Sun Yatsen recommended the establishment of a province in the region in 1906,but this did not happen until 1988,the year we moved to China.
基金the National Natural Science Foundation of China (Grant Nos. 40472067 and 40572072)Hundred Talents Program of the Chinese Academy of Sciencesthe Important Direction Project of Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-234)
文摘Meiji (Mischief) coral atoll, in Nansha (Spratly) Islands, South China Sea, consists of an annular reef rim surrounding a central lagoon. On the atoll rim there are either protuberant 'motu' (small coral patch reefs on the rim of atoll) islets or lower sandy cays that contain modern microbialite deposits on the corals in pinnacles and surrounding bottoms of the atoll. Microbialites, including villiform, hairy, and thin spine growth forms, as well as gelatinous masses, mats and encrustation, developed on coral colonies and atoll rim sediments between 0 and 15 m deep-water settings. The microbialites were produced by natural populations of filamentous cyanobacteria and grew on (1) bulbous corals together with Acropora sp., (2) on massive colonies of Galaxea fascicularis, (3) on dead Montipora digitata, and (4) on dead Acropora teres, some hairy microbialite growing around broken coral branches. This study demonstrates that microbial carbonates are developed in coral reefs of South China Sea and indicates that microbial processes may be important in the construction of modern reef systems. The results have significance in the determination of nature and composition in microorganisms implied in the formation ancient microbialites, and permit evaluation of the importance of microbial deposits in mo-dern coral reefs and of 'microbialites' in biogeochemical cycles of modern coral reef systems. The re-sults also provide evidence of modern analogues for ancient microbialites in shallow-water settings, and combine with sedimentological studies of ancient microbialites to understand their controls.
基金supported by the National Natural Science Foundation of China(40830852 and 41025007)the Chinese Ministry of Science & Technology Program(2007CB815905 and 2006BAB19B03)an ARC discoverygrant(DP0773081)
文摘Coral bleaching,characterized by a significant loss of symbiotic zooxanthellae,is the primary cause of mass coral mortality and reef degradation throughout the world.The characteristics,processes,and resistance of corals to bleaching varies significantly and is dependent on environmental conditions.We documented a mass coral bleaching event in June 2007 at the Meiji and Zhubi Reefs,Nansha Islands (NS),South China Sea using ecological surveys and measurement of coral zooxanthellae density and sea surface temperatures (SST).More than 35 species of corals (between 0-20 m in depth) were bleached.These bleached corals accounted for 15.6% of total corals in the investigated quadrats.The branching corals Pocillopora and Acropora were the most vulnerable species whereas the massive corals Porites and Favia were more tolerant of the high SSTs.Surprisingly,we found no evidence of bleaching in Agariciidae corals suggesting that this family is resistant to thermal stresses.The bleached corals had lost 72%-90% of their symbiotic zooxanthellae.Furthermore,corals that had no visual signs of bleaching had also lost 31%-53% of their zooxanthellae suggesting that most corals were experiencing the early stage of bleaching.The monthly mean SST during June 2007 was 30.8°C,the highest since 1998.Based on measurements of SST and the Hotspots and DHW data (NOAA),we conclude that it the extremely high SSTs triggered this coral bleaching event.Our results suggest that the previously accepted temperature thresholds used to predict coral bleaching based on satellite data are likely to underestimate the extent and intensity of coral bleaching,at least in the NS.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDA13010401
文摘As is well-known, Nansha Islands in the South China Sea(SCS) are of important strategic position and invaluable ecological value. Therefore, many attentions are paid to either the political and legal aspects of exposed features that matter in the maritime delimitation, or the physical and geographical characteristics of coral reefs that are the predominant structures of these islands. However, it seems that they consistently lose the connection of sciences and humanities in the research of Nansha Islands in the SCS. In this study, we carry out a combinative research, based on remote sensing data using satellite imagery analysis together with historical materials using literature investigation, so as to reconsider to the geographical characteristics of Nansha Islands from a standpoint of the United Nations Convention on the Law of the Sea(UNCLOS). After thoroughly appraising the statuses of these newly formed sand cays, several high tide features of Nansha Islands are identified. By means of the comparison of satellite images coupled with reference to nautical charting and sailing directions during different time periods, we can conclude that the statuses of these high tide features formed on reef platforms are relatively stable due to the growth of reef-building organisms although their migration patterns are subject to external disturbances, and hence the cursory judgment pursuant to the relevant provisions of the UNCLOS about whether a coral reef belongs to a low tide elevation only based on outdated references or ex parte evidences is not reliable. Moreover, it is accordingly justified to improve further development and perfection of the maritime legislation by eliminating such ambiguities with the growth of coral reefs and the evolution of sand cays being both taken into account.