The issue of China's energy supply security is not only the key problem which af- fects China's rapid and sustainable development in the 21st century, but also the one which international attention focuses on. Based...The issue of China's energy supply security is not only the key problem which af- fects China's rapid and sustainable development in the 21st century, but also the one which international attention focuses on. Based on the notable characteristic of spatial imbalance between energy production and consumption in China, this paper takes the evolution of China's primary energy resources development(excluding hydropower) from 1949 to 2007 as the study object, with the aim to sum up the evolutive characteristics and laws of China's energy resources development in the past nearly 60 years. Then, based on comprehensive considerations of coal's, oil's and natural gas's basic reserves, qualities, geological conditions production status, and ecological service function of every province, this paper adopts development potential index (DP)to evaluate the development potential of every province's en- ergy resources, and divide them into different ranks. Conclusions are drawn as follows: (1) Generally speaking, China's gross energy production was increasing in waves from 1949 to 2007. From the viewpoint of spatial patterns, China's energy resources development has shown a characteristic of "concentrating to the north and central areas, and evolving from linear-shaped to "T-shaped" pattern gradually since 1949. (2) The structure evolution of China's energy resources development in general has shown a trend of "coal proportion is dominant but decreasing, while oil and gas proportions are increasing" since 1949. (3) At the provincial scale, China's energy resources development potential could be divided into large, sub-large, general and small ranks, four in all. In the future, the spatial pattern of China's energy production will evolve from "T-shaped" to "R-shaped pattern". These conclusions will help to clarify the temporal and spatial characteristics and laws of China's energy resources development, and will be beneficial for China to design scientific and rational energy development strategies and plans, coordinate spatial imbalance of energy production and consumption, ensure national energy supply, avoid energy resources waste and disorderly development, and promote regional sustainable development under the globalization back-ground with changeful international energy market.展开更多
China’s slower economic growth and its economic transition and fuel mix will have a major impact on the global energy market in the next 20 years,according to the 2017 BP Energy Outlook released in Washington in earl...China’s slower economic growth and its economic transition and fuel mix will have a major impact on the global energy market in the next 20 years,according to the 2017 BP Energy Outlook released in Washington in early February of 2017.The report projects that China’s energy demand growth will slow down to 1.9 percent a year through the next 20 years to 2035,less than a third of China’s pace in the last 20 years of 6.3 percent a year.However,China will still consume more than a quarter展开更多
This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China...This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.展开更多
At present,with the steady development of the global economy,more and more countries begin to pay attention to the impact of ecological environment on economic development and human society,so the ecological environme...At present,with the steady development of the global economy,more and more countries begin to pay attention to the impact of ecological environment on economic development and human society,so the ecological environment has become a global issue that cannot be ignored in today’s era.Therefore,from the perspective of the ecological philosophy of Diversity&Harmony as well as Interaction&Co-existence,this paper will conduct ecological discourse analysis on the Energy in China’s New Era based on the transitivity system of systemic-functional grammar,and use the Corpus analysis software UAM Corpus Tool 3.3x to label and make statistics on the transitivity system,aiming to explore the distribution characteristics of the transitivity system in this white paper.Through the transitivity analysis of the white paper,this study helps readers to have a deeper understanding of the positive significance contained in the white paper.To a certain extent,it enables readers at home and abroad to understand China’s stance on energy issues and the positive image of China in energy ecology.It also awaken readers’awareness of environmental protection and acquire good habits of resource conservation to be in harmony between human and nature for sustainable development.展开更多
With the economic development, the problems of energy shortage become increasingly severe. As offshore wind energy has advantages, namely it is clean, renewable, not accounting for land area, without noise pollution, ...With the economic development, the problems of energy shortage become increasingly severe. As offshore wind energy has advantages, namely it is clean, renewable, not accounting for land area, without noise pollution, with large reserves, etc., which gradually attracts people's attention. In this paper, China's offshore annual average wind field and monthly average wind field under the mean climate state conditions are obtained, and the corresponding wind density distribution is calculated. China's offshore wind energy reserves and distribution conditions through the analysis of wind energy density distribution are summarized, and finally some suggestions for coastal offshore wind energy development and utilization in China are put forward.展开更多
China's energy consumption in the first three quarters grew at a faster pace as use of renewable energy posted steady momentum, official data showed Tuesday. Coal used in building materials and the electric, steel an...China's energy consumption in the first three quarters grew at a faster pace as use of renewable energy posted steady momentum, official data showed Tuesday. Coal used in building materials and the electric, steel and chemical industries accounted for 85 percent of overall coal consumption during the first nine months, data released by the National Energy Administration (NEA) showed. While petroleum consumption remained steady,展开更多
Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning ...Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning of vegetation remain scarce.In this study,we utilized the normalized difference vegetation index(NDVI)as an indicator of vegetation to investigate the trends of vegetation greening and browning(monotonic,interruption,and reversal)through the breaks for the additive season and trend(BFAST)method across China’s drylands from 1982 to 2022.It also reveals the impacts of ecological restoration programs(ERPs)and climate change on these vegetation trends.We find that the vegetation displays an obvious pattern of east-greening and west-browning in China’s drylands.Greening trends mainly exhibits monotonic greening(29.8%)and greening with setback(36.8%),whereas browning shows a greening to browning reversal(19.2%).The increase rate of greening to browning reversal is 0.0342/yr,which is apparently greater than that of greening with setback,0.0078/yr.This research highlights that,under the background of widespread vegetation greening,vegetation browning is pro-gressively increasing due to the effects of climate change.Furthermore,the ERPs have significantly increased vegetation coverage,with the increase rate in 2000-2022 being twice as much as that of 1982-1999 in reveg-etation regions.Vegetation browning in southwestern Qingzang Plateau is primarily driven by adverse climatic factors and anthropogenic disturbances,which offset the efforts of ERPs.展开更多
Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth...Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth in offshore waters of China, a parameterized wave power density model that considers the effects of the water depth is introduced to improve the calculating accuracy of the wave power density. Second, wave heights and wind speeds on the surface of the China's seas are retrieved from an AVISO multi-satellite altim-eter data set for the period from 2009 to 2013. Three mean wave period inversion models are developed and used to calculate the wave energy period. Third, a practical application value for developing the wave energy is analyzed based on buoy data. Finally, the wave power density is then calculated using the wave field data. Using the distribution of wave power density, the energy level frequency, the time variability indexes, the to-tal wave energy and the distribution of total wave energy density according to a wave state, the offshore wave energy in the China's seas is assessed. The results show that the areas of abundant and stable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait, southeast of Taiwan in the China's seas; the wave power density values in these areas are approximately 14.0–18.5 kW/m. The wave energy in the China’s seas presents obvious seasonal variations and optimal seasons for a wave energy utilization are in winter and autumn. Except for very coastal waters, in other sea areas in the China's seas, the energy is primarily from the wave state with 0.5 m≤Hs≤4 m, 4 s≤Te≤10 s whereHs is a significant wave height andTe is an energy period; within this wave state, the wave energy accounts for 80% above of the total wave energy. This characteristic is advantageous to designing wave energy convertors (WECs). The practical application value of the wave energy is higher which can be as an effective supplement for an energy con-sumption in some areas. The above results are consistent with the wave model which indicates fully that this new microwave remote sensing method altimeter is effective and feasible for the wave energy assessment.展开更多
A quantitative model was applied to analyze the energy demand and CO2 emissions in China following the Energy Production and Consumption Revolution Strategy(2016e2030)and long-term economic and social development targ...A quantitative model was applied to analyze the energy demand and CO2 emissions in China following the Energy Production and Consumption Revolution Strategy(2016e2030)and long-term economic and social development target China Dream.Results showed that 1)toward the 2050 China Dream target,total final energy consumption is expected to peak at 3.9 Gtce in 2030 and remain stable until 2050,whereas total primary energy consumption is expected to reach an upper platform by 2040 and around 5.8 Gtce by 2050;2)the proportion of non-fossil fuels is expected to reach approximately 50%and that of natural gas to reach more than 16%by 2050;3)CO2 emissions from energy use are expected to peak at 9.6 Gt by no later than 2030 and then gradually decline to 6.7 Gt by 2050.展开更多
The features of eddy kinetic energy (EKE) and the variations of upper circulation in theSouth China Sea (SCS) are discussed in this paper using geostrophic currents estimated from Maps of Sea Level Anomalies of the TO...The features of eddy kinetic energy (EKE) and the variations of upper circulation in theSouth China Sea (SCS) are discussed in this paper using geostrophic currents estimated from Maps of Sea Level Anomalies of the TOPEX/Poseidon altimetry data. A high EKE center is identified in the southeast of Vietnam coast with the highest energy level 1 400 cm2 ·s^(-2) in both summer and autumn. This high EKE center is caused by the instability of the current axis leaving the coast of Vietnam in summer and the transition of seasonal circulation patterns in autumn. There exists another high EKE region in the northeastern SCS, southwest to Taiwan Island in winter. This high EKE region is generated from the eddy activities caused by the Kuroshio intrusion and accumulates more than one third of the annual EKE, which confirms that the eddies are most active in winter. The transition of upper circulation patterns is also evidenced by the directions of the major axises of velocity variance ellipses between 10?and 14.5°N, which supports the model results reported before.展开更多
Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are inves- tigated with newly reprocessed satellite altimetry observations and hydrographic data. The eddy kinetic energy (EKE) lev...Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are inves- tigated with newly reprocessed satellite altimetry observations and hydrographic data. The eddy kinetic energy (EKE) level of basin-wide averages show a distinct seasonal cycle with the maximum in August-December and the minimum in February-May. Furthermore, the seasonal pattern of EKE in the basin is dominated by region offshore of central Vietnam (OCV), southwest of Taiwan Island (SWT), and southwest of Luzon (SWL), which are also the breeding grounds of mesoscale eddies in the SCS. Instability theory analysis suggests that the seasonal cycle of EKE is modulated by the baroclinic instability of the mean flow. High eddy growth rate (EGR) is found in the active eddy regions. Vertical velocity shear in the upper 50-500 m is crucial for the growth of baroclinic instability, leading to seasonal EKE evolution in the SCS.展开更多
A development framework of clean energy in China is put forward based on core development strategy, technology support, and policy and laws support. In this framework, the priority development and strategic backup of ...A development framework of clean energy in China is put forward based on core development strategy, technology support, and policy and laws support. In this framework, the priority development and strategic backup of clean energy are defined, and the technology support and policy and laws support are also presented.展开更多
Energy consumption has an inevitable connection with economic level and climate. Based on selected data covering annual total energy consumption and its composition and that of all kinds of energy i...Energy consumption has an inevitable connection with economic level and climate. Based on selected data covering annual total energy consumption and its composition and that of all kinds of energy in 1953-1999, the annual residential energy consumption and the coal and electricity consumption in 1980-1999 in China, the acreage of crops under cultivation suffered from drought and flood annually and gross domestic product (GDP) in 1953-1999 in the whole country, and mean daily temperature data from 29 provincial meteorological stations in the whole country from 1970 to 1999, this paper divides energy consumption into socio-economic energy consumption and climatic energy consumption in the way of multinomial. It also goes further into the relations and their changes between the climate energy consumption and climate factor and between the socio-economic energy consumption and the economic level in China with the method of statistical analysis. At present, there are obvious transitions in the changing relationships of the energy consumption to economy and climate, which comprises the transition of economic system from resource-intensive industry to technology-intensive industry and the transition of climatic driving factors of the energy consumption from driven by the disasters of drought and flood to driven by temperature.展开更多
China’s energy system requires a thorough transformation to achieve carbon neutrality.Here,leveraging the highly acclaimed the Integrated MARKAL-EFOM System model of China(China TIMES)that takes energy,the environmen...China’s energy system requires a thorough transformation to achieve carbon neutrality.Here,leveraging the highly acclaimed the Integrated MARKAL-EFOM System model of China(China TIMES)that takes energy,the environment,and the economy into consideration,four carbon-neutral scenarios are proposed and compared for different emission peak times and carbon emissions in 2050.The results show that China’s carbon emissions will peak at 10.3–10.4 Gt between 2025 and 2030.In 2050,renewables will account for 60%of total energy consumption(calorific value calculation)and 90%of total electricity generation,and the electrification rate will be close to 60%.The energy transition will bring sustained air quality improvement,with an 85%reduction in local air pollutants in 2050 compared with 2020 levels,and an early emission peak will yield more near-term benefits.Early peak attainment requires the extensive deployment of renewables over the next decade and an accelerated phasing out of coal after 2025.However,it will bring benefits such as obtaining better air quality sooner,reducing cumulative CO_(2) emissions,and buying more time for other sectors to transition.The pressure for more ambitious emission reductions in 2050 can be transmitted to the near future,affecting renewable energy development,energy service demand,and welfare losses.展开更多
Studies on climate change typically consider temperature and precipitation over extended periods but less so the wind. We used the Cross-Calibrated Multi-Platform (CCMP) 24-year wind fi eld data set to investigate the...Studies on climate change typically consider temperature and precipitation over extended periods but less so the wind. We used the Cross-Calibrated Multi-Platform (CCMP) 24-year wind fi eld data set to investigate the trends of wind energy over the South China Sea during 1988-2011. The results reveal a clear trend of increase in wind power density for each of three base statistics (i.e., mean, 90 th percentile and 99 th percentile) in all seasons and for annual means. The trends of wind power density showed obvious temporal and spatial variations. The magnitude of the trends was greatest in winter, intermediate in spring, and smallest in summer and autumn. A greater trend of increase was found in the northern areas of the South China Sea than in southern parts. The magnitude of the annual and seasonal trends over the South China Sea was larger in extreme high events (i.e., 90 th and 99 th percentiles) compared to the mean conditions. Sea surface temperature showed a negative correlation with the variability of wind power density over the majority of the South China Sea in all seasons and annual means, except for winter (41.7%).展开更多
This study investigates the relationship among pollutant emissions,energy consumption and economic development in China during the period 1982-2007 by using a one-step GMM-system model under a multivariable panel VAR ...This study investigates the relationship among pollutant emissions,energy consumption and economic development in China during the period 1982-2007 by using a one-step GMM-system model under a multivariable panel VAR framework,controlling for capital stock and labor force.Regarding the data for all 28 provinces as a whole,we find that there is a unidirectional positive relationship running from pollutant emission to economic development and a unidirectional negative relationship between pollutant emission and energy consumption.Based on traditional economic planning,the panel data of28 provinces are divided into two cross-province groups.It is discovered that in the eastern coastal region of China,there is only a unidirectional positive causal relationship leading from economic development to pollutant emission;while in the central and western regions,there are the unidirectional Granger causal relationships between pollutant emission and energy consumption,as well as between pollutant emission and economic development.There is also a unique unidirectional causal relationship running from economic development to energy consumption,which does not appear in the eastem coastal region or in China as a whole.展开更多
This article developed a decomposition model of energy productivity on the basis of the economic growth model. Four factors were considered which may influence China’s energy productivity according to this model: tec...This article developed a decomposition model of energy productivity on the basis of the economic growth model. Four factors were considered which may influence China’s energy productivity according to this model: technology improvement, resource allocation structure, industrial structure and institute arrangement. Then, an econometric model was employed to test the four factors empirically on the basis of China’s statistical data from 1978 to 2004. Results indicated that capital deepening con- tributes the most (207%) to energy efficiency improvement, and impact from labor forces (13%) is the weakest one in resource factor; industrial structure (7%) and institute innovation (9.5%) positively improve the energy productivity.展开更多
The emission of the traditional energy chemical industry accounts for 20% of the total manmade VOC emission in China, of which coal chemical and petrochemical plants are one of the most important VOC emission sources....The emission of the traditional energy chemical industry accounts for 20% of the total manmade VOC emission in China, of which coal chemical and petrochemical plants are one of the most important VOC emission sources. VOC emission sources mainly include the leakage of oil refinery units and equipment, pipes and valves, respiration and leakage of various types of storage tanks, effusion of oils during loading and unloading, effusion of sewage treatment systems, all kinds of process tail gas, etc. In this paper, the current management status of VOC emission in China’s coal chemical industry and petrochemical industry are analyzed, which divides VOC management into intentional and fugitive emission. The Leak Detection and Repair (LDAR) management method and technology for equipment, pipes and valves implemented in the United States are studied to propose self-inspection management methods and measures for VOC emissions in the energy chemical industry, providing strategies and recommendations for energy conservation, emission reduction and cleaner production in the traditional energy chemical industry.展开更多
On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a sla...On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to Septem- ber. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 mW/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Nifio3.4 index are negatively correlated.展开更多
With the heavy dependence of world's growing economy on energy supply, the energy issue again comes into the spotlight throughout the world. How to ensure energy security is a great concern to most countries in the w...With the heavy dependence of world's growing economy on energy supply, the energy issue again comes into the spotlight throughout the world. How to ensure energy security is a great concern to most countries in the world. In this paper, trends in energy supply, energy security mechanism and new challenges are analyzed. As well as, China's security strategies are also proposed.展开更多
基金Key Project of National Science and Technology Supporting Program, No.2006038053001 Key Project of National Natural Science Foundation of China, No.40535026 Environment Protection and Public Welfare Project of Ministry of Science and Technology, No.08L80370AJ
文摘The issue of China's energy supply security is not only the key problem which af- fects China's rapid and sustainable development in the 21st century, but also the one which international attention focuses on. Based on the notable characteristic of spatial imbalance between energy production and consumption in China, this paper takes the evolution of China's primary energy resources development(excluding hydropower) from 1949 to 2007 as the study object, with the aim to sum up the evolutive characteristics and laws of China's energy resources development in the past nearly 60 years. Then, based on comprehensive considerations of coal's, oil's and natural gas's basic reserves, qualities, geological conditions production status, and ecological service function of every province, this paper adopts development potential index (DP)to evaluate the development potential of every province's en- ergy resources, and divide them into different ranks. Conclusions are drawn as follows: (1) Generally speaking, China's gross energy production was increasing in waves from 1949 to 2007. From the viewpoint of spatial patterns, China's energy resources development has shown a characteristic of "concentrating to the north and central areas, and evolving from linear-shaped to "T-shaped" pattern gradually since 1949. (2) The structure evolution of China's energy resources development in general has shown a trend of "coal proportion is dominant but decreasing, while oil and gas proportions are increasing" since 1949. (3) At the provincial scale, China's energy resources development potential could be divided into large, sub-large, general and small ranks, four in all. In the future, the spatial pattern of China's energy production will evolve from "T-shaped" to "R-shaped pattern". These conclusions will help to clarify the temporal and spatial characteristics and laws of China's energy resources development, and will be beneficial for China to design scientific and rational energy development strategies and plans, coordinate spatial imbalance of energy production and consumption, ensure national energy supply, avoid energy resources waste and disorderly development, and promote regional sustainable development under the globalization back-ground with changeful international energy market.
文摘China’s slower economic growth and its economic transition and fuel mix will have a major impact on the global energy market in the next 20 years,according to the 2017 BP Energy Outlook released in Washington in early February of 2017.The report projects that China’s energy demand growth will slow down to 1.9 percent a year through the next 20 years to 2035,less than a third of China’s pace in the last 20 years of 6.3 percent a year.However,China will still consume more than a quarter
文摘This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.
文摘At present,with the steady development of the global economy,more and more countries begin to pay attention to the impact of ecological environment on economic development and human society,so the ecological environment has become a global issue that cannot be ignored in today’s era.Therefore,from the perspective of the ecological philosophy of Diversity&Harmony as well as Interaction&Co-existence,this paper will conduct ecological discourse analysis on the Energy in China’s New Era based on the transitivity system of systemic-functional grammar,and use the Corpus analysis software UAM Corpus Tool 3.3x to label and make statistics on the transitivity system,aiming to explore the distribution characteristics of the transitivity system in this white paper.Through the transitivity analysis of the white paper,this study helps readers to have a deeper understanding of the positive significance contained in the white paper.To a certain extent,it enables readers at home and abroad to understand China’s stance on energy issues and the positive image of China in energy ecology.It also awaken readers’awareness of environmental protection and acquire good habits of resource conservation to be in harmony between human and nature for sustainable development.
文摘With the economic development, the problems of energy shortage become increasingly severe. As offshore wind energy has advantages, namely it is clean, renewable, not accounting for land area, without noise pollution, with large reserves, etc., which gradually attracts people's attention. In this paper, China's offshore annual average wind field and monthly average wind field under the mean climate state conditions are obtained, and the corresponding wind density distribution is calculated. China's offshore wind energy reserves and distribution conditions through the analysis of wind energy density distribution are summarized, and finally some suggestions for coastal offshore wind energy development and utilization in China are put forward.
文摘China's energy consumption in the first three quarters grew at a faster pace as use of renewable energy posted steady momentum, official data showed Tuesday. Coal used in building materials and the electric, steel and chemical industries accounted for 85 percent of overall coal consumption during the first nine months, data released by the National Energy Administration (NEA) showed. While petroleum consumption remained steady,
基金supported by the National Natural Science Foundation of China(Grants No.41991231,42041004,and 41888101)the China University Research Talents Recruitment Program(111 project,Grant No.B13045).
文摘Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning of vegetation remain scarce.In this study,we utilized the normalized difference vegetation index(NDVI)as an indicator of vegetation to investigate the trends of vegetation greening and browning(monotonic,interruption,and reversal)through the breaks for the additive season and trend(BFAST)method across China’s drylands from 1982 to 2022.It also reveals the impacts of ecological restoration programs(ERPs)and climate change on these vegetation trends.We find that the vegetation displays an obvious pattern of east-greening and west-browning in China’s drylands.Greening trends mainly exhibits monotonic greening(29.8%)and greening with setback(36.8%),whereas browning shows a greening to browning reversal(19.2%).The increase rate of greening to browning reversal is 0.0342/yr,which is apparently greater than that of greening with setback,0.0078/yr.This research highlights that,under the background of widespread vegetation greening,vegetation browning is pro-gressively increasing due to the effects of climate change.Furthermore,the ERPs have significantly increased vegetation coverage,with the increase rate in 2000-2022 being twice as much as that of 1982-1999 in reveg-etation regions.Vegetation browning in southwestern Qingzang Plateau is primarily driven by adverse climatic factors and anthropogenic disturbances,which offset the efforts of ERPs.
基金The Ocean Renewable Energy Special Fund Project of the State Oceanic Administration of China under contract No.GHME2011ZC07the Dragon Ⅲ Project of the European Space Agency and Ministry of Science and Technology of China under contract No.10412
文摘Wave energy resources are abundant in both offshore and nearshore areas of the China's seas. A reliable assessment of the wave energy resources must be performed before they can be exploited. First, for a water depth in offshore waters of China, a parameterized wave power density model that considers the effects of the water depth is introduced to improve the calculating accuracy of the wave power density. Second, wave heights and wind speeds on the surface of the China's seas are retrieved from an AVISO multi-satellite altim-eter data set for the period from 2009 to 2013. Three mean wave period inversion models are developed and used to calculate the wave energy period. Third, a practical application value for developing the wave energy is analyzed based on buoy data. Finally, the wave power density is then calculated using the wave field data. Using the distribution of wave power density, the energy level frequency, the time variability indexes, the to-tal wave energy and the distribution of total wave energy density according to a wave state, the offshore wave energy in the China's seas is assessed. The results show that the areas of abundant and stable wave energy are primarily located in the north-central part of the South China Sea, the Luzon Strait, southeast of Taiwan in the China's seas; the wave power density values in these areas are approximately 14.0–18.5 kW/m. The wave energy in the China’s seas presents obvious seasonal variations and optimal seasons for a wave energy utilization are in winter and autumn. Except for very coastal waters, in other sea areas in the China's seas, the energy is primarily from the wave state with 0.5 m≤Hs≤4 m, 4 s≤Te≤10 s whereHs is a significant wave height andTe is an energy period; within this wave state, the wave energy accounts for 80% above of the total wave energy. This characteristic is advantageous to designing wave energy convertors (WECs). The practical application value of the wave energy is higher which can be as an effective supplement for an energy con-sumption in some areas. The above results are consistent with the wave model which indicates fully that this new microwave remote sensing method altimeter is effective and feasible for the wave energy assessment.
基金We thank National Key R&D Program of China(2016YFA0602601),National Natural Science Foundation of China(71573062),China Energy Modeling Forum(CEMF),for support of the study.
文摘A quantitative model was applied to analyze the energy demand and CO2 emissions in China following the Energy Production and Consumption Revolution Strategy(2016e2030)and long-term economic and social development target China Dream.Results showed that 1)toward the 2050 China Dream target,total final energy consumption is expected to peak at 3.9 Gtce in 2030 and remain stable until 2050,whereas total primary energy consumption is expected to reach an upper platform by 2040 and around 5.8 Gtce by 2050;2)the proportion of non-fossil fuels is expected to reach approximately 50%and that of natural gas to reach more than 16%by 2050;3)CO2 emissions from energy use are expected to peak at 9.6 Gt by no later than 2030 and then gradually decline to 6.7 Gt by 2050.
基金This study was supported by the LED of South China Sea Institute of Oceanology the State Key Basic Research Program of China under contract No. G1999043806 the Key Project of Fujian Province of China under contract No. 98-Z-179.
文摘The features of eddy kinetic energy (EKE) and the variations of upper circulation in theSouth China Sea (SCS) are discussed in this paper using geostrophic currents estimated from Maps of Sea Level Anomalies of the TOPEX/Poseidon altimetry data. A high EKE center is identified in the southeast of Vietnam coast with the highest energy level 1 400 cm2 ·s^(-2) in both summer and autumn. This high EKE center is caused by the instability of the current axis leaving the coast of Vietnam in summer and the transition of seasonal circulation patterns in autumn. There exists another high EKE region in the northeastern SCS, southwest to Taiwan Island in winter. This high EKE region is generated from the eddy activities caused by the Kuroshio intrusion and accumulates more than one third of the annual EKE, which confirms that the eddies are most active in winter. The transition of upper circulation patterns is also evidenced by the directions of the major axises of velocity variance ellipses between 10?and 14.5°N, which supports the model results reported before.
基金The National Natural Science Foundation of China under contract No.41076011,40531006,41106024 and40976014the National Basic Research Program of China under contract No.2011CB403600
文摘Mesoscale eddy activity and its modulation mechanism in the South China Sea (SCS) are inves- tigated with newly reprocessed satellite altimetry observations and hydrographic data. The eddy kinetic energy (EKE) level of basin-wide averages show a distinct seasonal cycle with the maximum in August-December and the minimum in February-May. Furthermore, the seasonal pattern of EKE in the basin is dominated by region offshore of central Vietnam (OCV), southwest of Taiwan Island (SWT), and southwest of Luzon (SWL), which are also the breeding grounds of mesoscale eddies in the SCS. Instability theory analysis suggests that the seasonal cycle of EKE is modulated by the baroclinic instability of the mean flow. High eddy growth rate (EGR) is found in the active eddy regions. Vertical velocity shear in the upper 50-500 m is crucial for the growth of baroclinic instability, leading to seasonal EKE evolution in the SCS.
文摘A development framework of clean energy in China is put forward based on core development strategy, technology support, and policy and laws support. In this framework, the priority development and strategic backup of clean energy are defined, and the technology support and policy and laws support are also presented.
基金Collaborative project "Asia-Pacific Integrated Model of Climate Change/China Impact Model" Henan Province Foundation of Natural Science No.994071000
文摘Energy consumption has an inevitable connection with economic level and climate. Based on selected data covering annual total energy consumption and its composition and that of all kinds of energy in 1953-1999, the annual residential energy consumption and the coal and electricity consumption in 1980-1999 in China, the acreage of crops under cultivation suffered from drought and flood annually and gross domestic product (GDP) in 1953-1999 in the whole country, and mean daily temperature data from 29 provincial meteorological stations in the whole country from 1970 to 1999, this paper divides energy consumption into socio-economic energy consumption and climatic energy consumption in the way of multinomial. It also goes further into the relations and their changes between the climate energy consumption and climate factor and between the socio-economic energy consumption and the economic level in China with the method of statistical analysis. At present, there are obvious transitions in the changing relationships of the energy consumption to economy and climate, which comprises the transition of economic system from resource-intensive industry to technology-intensive industry and the transition of climatic driving factors of the energy consumption from driven by the disasters of drought and flood to driven by temperature.
基金supported by the National Natural Science Foundation of China (71690243 and 51861135102)the Ministry of Science and Technology of the People’s Republic of China (2018YFC1509006)the World Bank Group (7202065)
文摘China’s energy system requires a thorough transformation to achieve carbon neutrality.Here,leveraging the highly acclaimed the Integrated MARKAL-EFOM System model of China(China TIMES)that takes energy,the environment,and the economy into consideration,four carbon-neutral scenarios are proposed and compared for different emission peak times and carbon emissions in 2050.The results show that China’s carbon emissions will peak at 10.3–10.4 Gt between 2025 and 2030.In 2050,renewables will account for 60%of total energy consumption(calorific value calculation)and 90%of total electricity generation,and the electrification rate will be close to 60%.The energy transition will bring sustained air quality improvement,with an 85%reduction in local air pollutants in 2050 compared with 2020 levels,and an early emission peak will yield more near-term benefits.Early peak attainment requires the extensive deployment of renewables over the next decade and an accelerated phasing out of coal after 2025.However,it will bring benefits such as obtaining better air quality sooner,reducing cumulative CO_(2) emissions,and buying more time for other sectors to transition.The pressure for more ambitious emission reductions in 2050 can be transmitted to the near future,affecting renewable energy development,energy service demand,and welfare losses.
基金Supported by the National Natural Science Foundation of China(Nos.5171101175,41606196)the Tianjin Natural Science Foundation(No.16JCYBJC20600)+1 种基金the National Marine Renewable Energy Programs of China(No.GHME2016ZC04)the National Marine Function-Oriented Zone Planning
文摘Studies on climate change typically consider temperature and precipitation over extended periods but less so the wind. We used the Cross-Calibrated Multi-Platform (CCMP) 24-year wind fi eld data set to investigate the trends of wind energy over the South China Sea during 1988-2011. The results reveal a clear trend of increase in wind power density for each of three base statistics (i.e., mean, 90 th percentile and 99 th percentile) in all seasons and for annual means. The trends of wind power density showed obvious temporal and spatial variations. The magnitude of the trends was greatest in winter, intermediate in spring, and smallest in summer and autumn. A greater trend of increase was found in the northern areas of the South China Sea than in southern parts. The magnitude of the annual and seasonal trends over the South China Sea was larger in extreme high events (i.e., 90 th and 99 th percentiles) compared to the mean conditions. Sea surface temperature showed a negative correlation with the variability of wind power density over the majority of the South China Sea in all seasons and annual means, except for winter (41.7%).
文摘This study investigates the relationship among pollutant emissions,energy consumption and economic development in China during the period 1982-2007 by using a one-step GMM-system model under a multivariable panel VAR framework,controlling for capital stock and labor force.Regarding the data for all 28 provinces as a whole,we find that there is a unidirectional positive relationship running from pollutant emission to economic development and a unidirectional negative relationship between pollutant emission and energy consumption.Based on traditional economic planning,the panel data of28 provinces are divided into two cross-province groups.It is discovered that in the eastern coastal region of China,there is only a unidirectional positive causal relationship leading from economic development to pollutant emission;while in the central and western regions,there are the unidirectional Granger causal relationships between pollutant emission and energy consumption,as well as between pollutant emission and economic development.There is also a unique unidirectional causal relationship running from economic development to energy consumption,which does not appear in the eastem coastal region or in China as a whole.
文摘This article developed a decomposition model of energy productivity on the basis of the economic growth model. Four factors were considered which may influence China’s energy productivity according to this model: technology improvement, resource allocation structure, industrial structure and institute arrangement. Then, an econometric model was employed to test the four factors empirically on the basis of China’s statistical data from 1978 to 2004. Results indicated that capital deepening con- tributes the most (207%) to energy efficiency improvement, and impact from labor forces (13%) is the weakest one in resource factor; industrial structure (7%) and institute innovation (9.5%) positively improve the energy productivity.
文摘The emission of the traditional energy chemical industry accounts for 20% of the total manmade VOC emission in China, of which coal chemical and petrochemical plants are one of the most important VOC emission sources. VOC emission sources mainly include the leakage of oil refinery units and equipment, pipes and valves, respiration and leakage of various types of storage tanks, effusion of oils during loading and unloading, effusion of sewage treatment systems, all kinds of process tail gas, etc. In this paper, the current management status of VOC emission in China’s coal chemical industry and petrochemical industry are analyzed, which divides VOC management into intentional and fugitive emission. The Leak Detection and Repair (LDAR) management method and technology for equipment, pipes and valves implemented in the United States are studied to propose self-inspection management methods and measures for VOC emissions in the energy chemical industry, providing strategies and recommendations for energy conservation, emission reduction and cleaner production in the traditional energy chemical industry.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020201the National Basic Research Program of China under contract No.2013CB956101+2 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences under con-tract No.SQ201302the National Science Foundation Council Grant of China under contract Nos 41430964,41406023 and 41025019the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams and General Research Fund of Hong Kong Research Grants Council under contract No.CUHK402912
文摘On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation (SODA), the wind-induced near-inertial energy flux (NIEF) in the mixed layer of the South China Sea (SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to Septem- ber. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 mW/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Nifio3.4 index are negatively correlated.
文摘With the heavy dependence of world's growing economy on energy supply, the energy issue again comes into the spotlight throughout the world. How to ensure energy security is a great concern to most countries in the world. In this paper, trends in energy supply, energy security mechanism and new challenges are analyzed. As well as, China's security strategies are also proposed.