Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still lim...Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still limited. In the present paper, the effect of coarse aggregate size (single grade of 5~10, 10~16, 16~20 and 20~25 mm) on stress-crack opening (σ-w) relation in normal and high strength concretes (compressive strength of 40 and 80 MPa, respectively) was studied. The investigation was based on three-point bending tests implemented by fictitious crack analysis. The result shows that coarse aggregate size and cement matrix strength significantly influence the shape of σ-w curve. For a given total aggregate content, in normal strength concrete, smaller size of aggregate leads to a high tensile strength and a sharp stress drop after the peak stress. The smaller the coarse aggregate, the steeper the σ-w curve. By contrast, in high strength concrete, the effect of aggregate size on σ-w relation almost vanishes. A similar σ-w relation is obtained for the concrete except for the case of 20~25 mm coarse aggregate size. The stress drop after the peak stress is more significant for high strength concrete than that for normal strength concrete. Meanwhile, the smaller the coarse aggregate size, the higher the flexural strength. Fracture energy and characteristic length increase with increasing coarse aggregate size in both normal and high strength concretes.展开更多
Fracture energy in strain softening regime was investigated analytically by considering microstructures interaction and interplay.Based on gradient-dependent plasticity, the thickness of localized band was determined ...Fracture energy in strain softening regime was investigated analytically by considering microstructures interaction and interplay.Based on gradient-dependent plasticity, the thickness of localized band was determined completely and strictly by characteristic length in relation to average grain diameter.After obtaining the plastic shear displacement of the band,the formula on axial response of concrete was proposed and the analytical post-peak fracture energy was deduced.A comparison between present theoretical results and earlier experimental results was carried out and the analytical result is reasonable and has a plausible foundation as considering the localized failure theoretically.Decreasing the relative stress leads to increasing the fracture energy non-linearly.The larger the shear elastic modulus and shear softening modulus,the lower the post-peak fracture energy.A larger fracture energy is caused by a larger thickness of shear band or a larger characteristic length of concrete material.If the inclination angle of the shear band and the compressive strength are not concerned with structural size of specimen,the post-peak fracture energy is size independent.展开更多
An effective method to investigate the stabilities of a series of new closo-BnHn2- (n = 12, 14, 16, 18, 20, 22, 24, 30) was put forward with the aid of G96PW91/SHC calculations. Stabilities are related to the relati...An effective method to investigate the stabilities of a series of new closo-BnHn2- (n = 12, 14, 16, 18, 20, 22, 24, 30) was put forward with the aid of G96PW91/SHC calculations. Stabilities are related to the relative stabilized energies (RSE) and the 2e3c bound geometries of closo-BnHn2-. The structures in which a boron atom connects to four atoms up to seven are stable and appear in many borides because of the lower relative stabilized energy. In geometries, both triangular and quadrangular faces are in favor of forming the structures of closo-BnHn2-. The energies of optimized geometries support the existence of these new compounds. By employing both RSE and AE per boron atom in cage, the stabilities were studied to predict the probabilities of unknown clusters in existence. The electron-deficient clusters can be understood that the positive holes should be disperse to every triangular face and lead to share the holes, wherever there are not enough electrons to occupy them. The negative charges which anions carry distribute to 2e3c bonds to increase the stabilities.展开更多
Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault re...Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault regions. In this study, a new method for identifying the velocity pulses is proposed, based on different trends of two parameters: the short-time energy and the short-time zero crossing rate of a ground motion record. A new pulse indicator, the relative energy zero ratio(REZR), is defined to qualitatively identify pulse-like features. The threshold for pulse-like ground motions is derived and compared with two other identification methods through statistical analysis. The proposed procedure not only shows good accuracy and efficiency when identifying pulse-like ground motions but also exhibits good performance for classifying records with high-frequency noise and discontinuous pulses. The REZR method does not require a waveform formula to express and fit the potential velocity pulses;it is a purely signal-based classification method. Finally, the proposed procedure is used to evaluate the contribution of pulse-like motions to the total input energy of a seismic record, which dramatically increases the seismic damage potential.展开更多
Thermodynamics being among the most synthetic theories of physics and the mass-energy relation E = mc2 among the most general equations of science, it is somewhat surprising that this latter is not explicitly present ...Thermodynamics being among the most synthetic theories of physics and the mass-energy relation E = mc2 among the most general equations of science, it is somewhat surprising that this latter is not explicitly present in the laws of thermodynamics. Coupling this observation with the conceptual difficulties often felt in learning thermodynamics leads to the idea that both situations may have the same cause. On the basis of these clues, this paper is intended to provide complementary arguments to a hypothesis already presented. It consists of showing the existence of an imperfect compatibility between the conventional formulations of the first and second laws of thermodynamics and suggesting the need of the mass-energy relation to solving the problem.展开更多
To identify target energy balance-related behaviors(ERBs),baseline data from 141overweight or obese schoolchildren(aged 8-14years old)was used to predict adiposity[body mass index(BMI)and fat percentage]one year...To identify target energy balance-related behaviors(ERBs),baseline data from 141overweight or obese schoolchildren(aged 8-14years old)was used to predict adiposity[body mass index(BMI)and fat percentage]one year later.The ERBs included a modified Dietary Approach to Stop Hypertension diet score(DASH score),leisure-time physical activity(PA,days/week),and leisure screen time(minutes/day).Several cardiometabolic variables were measured in the fasting state, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood glucose (GLU), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C).展开更多
We investigate the free energy relation for a system contacting with a non-Markovian heat bath and find that the validity of the relation sensitively depends on the non-Markovian memory effect, which is especially rel...We investigate the free energy relation for a system contacting with a non-Markovian heat bath and find that the validity of the relation sensitively depends on the non-Markovian memory effect, which is especially related go the initial preparation effect. This memory effect drives the statistical distribution of the system out of the initial preparation, even if the system starts from an equilibrium state. This leads to the violation of the free energy relation. A possible way of eliminating this memory effect is proposed.展开更多
By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy wave-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Si...By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy wave-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Since this system of equations includes the effects of water substance, mass forcing, diabatic heating, and dissipations, the derived wave-activity relation generalizes the previous result for a dry atmosphere. The Casimir function used in the derivation is a monotonous function of virtual potential vorticity and virtual potential temperature. A virtual energy equation is employed (in place of the previous zonal momentum equation) in the derivation, and the basic state is stationary but can be three-dimensional or, at least, not necessarily zonally symmetric. The derived wave-activity relation is further used for the diagnosis of the evolution and propagation of meso-scale weather systems leading to heavy rainfall. Our diagnosis of two real eases of heavy precipitation shows that positive anomalies of the virtual pseudoenergy wave-activity density correspond well with the strong precipitation and are capable of indicating the movement of the precipitation region. This is largely due to the cyclonic vorticity perturbation and the vertically increasing virtual potential temperature over the precipitation region.展开更多
Although there are methods for testing the stress-strain relation and strength,which are the most fundamental and important properties of metallic materials,their application to small-volume materials and tube compone...Although there are methods for testing the stress-strain relation and strength,which are the most fundamental and important properties of metallic materials,their application to small-volume materials and tube components is lim-ited.In this study,based on energy density equivalence,a new dimensionless elastoplastic load-displacement model for compressed metal rings with isotropy and constitutive power law is proposed to describe the relations among the geometric dimensions,Hollomon law parameters,load,and displacement.Furthermore,a novel test method was developed to determine the elastic modulus,stress-strain relation,yield and tensile strength via ring compression test.The universality and accuracy of the method were verified within a wide range of imaginary materials using finite element analysis(FEA),and the results show that the stress-strain curves obtained by this method are consistent with those inputted in the FEA program.Additionally,a series of ring compression tests were performed for seven metallic materials.It was found that the stress-strain curves and mechanical properties predicted by the method agreed with the uniaxial tensile results.With its low material consumption,the ring compression test has the potential to be as an alternative to traditional tensile test when direct tension method is limited.展开更多
Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify th...Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model.展开更多
In this paper, progress in strain study of blocks and faults by GPS data are discussed, and the concept that active structures between blocks are the main body of crustal strain is clarified. By energy transfer princi...In this paper, progress in strain study of blocks and faults by GPS data are discussed, and the concept that active structures between blocks are the main body of crustal strain is clarified. By energy transfer principle of elastic mechanics, the relation between strain around faults and tectonic force on fault surfaces is set up and main body element model of crustal strain is constructed. Finally, the relation between mechanical evolution of model and seismogenic process of Kunlun earthquake (Ms=8.1) is discussed by continuous GPS data of datum stations. The result suggests that the relatively relaxed change under background of strong compressing and shearing may help to trigger moderate-strong earthquakes.展开更多
Dark energy and dark matter in the universe are assigned to the positive and negative, respectively, “hidden” relative energies between the diquark and quark in nucleon in the scalar strong interaction hadron theory...Dark energy and dark matter in the universe are assigned to the positive and negative, respectively, “hidden” relative energies between the diquark and quark in nucleon in the scalar strong interaction hadron theory, SSI. The origin of the “darkness” is that quarks cannot be observed individually.展开更多
Gulf Cooperation Council (GCC) countries are the main countries of the West Asia, they are rich in oil and natural gas, and very important in the world political and economic arena. In recent years, the trade volume...Gulf Cooperation Council (GCC) countries are the main countries of the West Asia, they are rich in oil and natural gas, and very important in the world political and economic arena. In recent years, the trade volume between China and six GCC countries has been rising. The paper analyzes the importance and the prospect of China-GCC Free Trade Area negotiations. The two sides should take positive action to further close dialogue mechanism between the two sides, restart the negotiations on the free trade zone between China and GCC countries as soon as possible, and reach a win-win agreement.展开更多
By taking into account the relative energy between the diquark and the quark in nucleons, the gravitational singularity in a black hole created from a collapsing neutron star can be removed;compatibility with quantum ...By taking into account the relative energy between the diquark and the quark in nucleons, the gravitational singularity in a black hole created from a collapsing neutron star can be removed;compatibility with quantum mechanics is restored. This black hole becomes a “black” neutron star. The negative relative energy identified as dark matter in the previous paper can account for the galaxy rotation curve. The positive relative energy identified as dark energy in the previous paper can explain the accelerating expansion of the universe. A possible scenario for cosmic ray generation is given.展开更多
In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann-Feynman theorem, we derive the relation be...In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann-Feynman theorem, we derive the relation between the energy gap and the Berry phase closed to the excited state quantum phase transition (ESQPT) in the Lipkin model. It is found that the energy gap is approximately linearly dependent on the Berry phase being closed to the ESQPT for large N. As a result, the critical behavior of the energy gap is similar to that of the Berry phase. In addition, we also perform a semiclassical qualitative analysis about the critical behavior of the energy gap.展开更多
The mass-energy equation ?is derived in general from Newton’s equation of motion without use of electrodynamics, or Einstein’s Postulates which were presented in his superb 1905 paper on Special Relativity (SR). Thi...The mass-energy equation ?is derived in general from Newton’s equation of motion without use of electrodynamics, or Einstein’s Postulates which were presented in his superb 1905 paper on Special Relativity (SR). This was previously not thought to be possible. This novel derivation of an accelerated body of rest mass m0 is compared with the traditional SR inertial derivation. A discussion is given of pre-1905, electrostatic and electrodynamic derivations of the mass-energy relation yielding , as well as more recent ones. A concise pre-relativity history of the mass-energy relation is traced back to Newton in 1717.展开更多
The theory of Relation provides an explanation for the Arcade 2 excess. It assumes that the isotropic radio emission measured by the Arcade 2 Collaboration, which is 5 - 6 times brighter than the expected contribution...The theory of Relation provides an explanation for the Arcade 2 excess. It assumes that the isotropic radio emission measured by the Arcade 2 Collaboration, which is 5 - 6 times brighter than the expected contributions from known extra-galactic sources, is the residue of an immense primitive energy of ordinary matter released by a relativistic bang almost 100 million years after the big bang, which gave the mass-energy the missing gravity to activate contraction. This relativistic bang, via a Lorentz energy transformation, would have released enormous energy held to be the source of the powerful radio noise detected by the NASA researchers. This transformation would have simultaneously triggered the formation of the first stars from dense gas and the reionization of less dense neutral gas. This departs from the idea that continuous reionization began after the formation of the first stars. We emphasize the importance of primordial magnetic fields, which would have generated significant density fluctuations during recombination and acted as a direct seed for cosmic structures. The first stars and galaxies were bathed in strong magnetic fields that gave rise to the radio microwave din (boom) discovered by Arcade 2. These intense magnetic fields alter the trajectory of charged particles zooming near the speed of light, triggering the space roar and emitting radiation that forms a synchrotron radio background. The theory of Relation offers an alternative to the Lambda-CDM cosmological model, which has become the standard model of the big bang, which leads straight to the vacuum catastrophe.展开更多
Structures located in seismically active regions may be subjected to mainshock-aftershock(MSAS)sequences.present study selected two kinds of MSAS sequences,with one aftershock and two aftershocks,respectively.The af...Structures located in seismically active regions may be subjected to mainshock-aftershock(MSAS)sequences.present study selected two kinds of MSAS sequences,with one aftershock and two aftershocks,respectively.The aftershocksThe MSAS sequence with one aftershock exhibited a 10%to 30%hysteretic energy increase,whereas the MSAS sequence with two aftershocks presented a 20%to 40%hysteretic energy increase.Finally,a hysteretic energy prediction equation is proposed as a function of the vibration period,ductility value,and damping ratio to estimate hysteretic energy for mainshockaftershock sequences.展开更多
The first-order revision and the approximation analytical formula of the energy levels for hydrogen-like atoms under the condition of Debye shielding potential are achieved by means of the Rayleigh–Schr?dinger pertur...The first-order revision and the approximation analytical formula of the energy levels for hydrogen-like atoms under the condition of Debye shielding potential are achieved by means of the Rayleigh–Schr?dinger perturbation theory; meanwhile, the corresponding recurrence relations are obtained from the use of the solution of power series. Based on the above solutions and with the use of energy consistent method the equivalent value of second-order reversion under the condition of Debye shielding potential is produced as well and the result is compared with the data obtained by the numerical method. Besides, the critical bond-state and corresponding cut-off conditions are discussed.展开更多
文摘Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still limited. In the present paper, the effect of coarse aggregate size (single grade of 5~10, 10~16, 16~20 and 20~25 mm) on stress-crack opening (σ-w) relation in normal and high strength concretes (compressive strength of 40 and 80 MPa, respectively) was studied. The investigation was based on three-point bending tests implemented by fictitious crack analysis. The result shows that coarse aggregate size and cement matrix strength significantly influence the shape of σ-w curve. For a given total aggregate content, in normal strength concrete, smaller size of aggregate leads to a high tensile strength and a sharp stress drop after the peak stress. The smaller the coarse aggregate, the steeper the σ-w curve. By contrast, in high strength concrete, the effect of aggregate size on σ-w relation almost vanishes. A similar σ-w relation is obtained for the concrete except for the case of 20~25 mm coarse aggregate size. The stress drop after the peak stress is more significant for high strength concrete than that for normal strength concrete. Meanwhile, the smaller the coarse aggregate size, the higher the flexural strength. Fracture energy and characteristic length increase with increasing coarse aggregate size in both normal and high strength concretes.
文摘Fracture energy in strain softening regime was investigated analytically by considering microstructures interaction and interplay.Based on gradient-dependent plasticity, the thickness of localized band was determined completely and strictly by characteristic length in relation to average grain diameter.After obtaining the plastic shear displacement of the band,the formula on axial response of concrete was proposed and the analytical post-peak fracture energy was deduced.A comparison between present theoretical results and earlier experimental results was carried out and the analytical result is reasonable and has a plausible foundation as considering the localized failure theoretically.Decreasing the relative stress leads to increasing the fracture energy non-linearly.The larger the shear elastic modulus and shear softening modulus,the lower the post-peak fracture energy.A larger fracture energy is caused by a larger thickness of shear band or a larger characteristic length of concrete material.If the inclination angle of the shear band and the compressive strength are not concerned with structural size of specimen,the post-peak fracture energy is size independent.
文摘An effective method to investigate the stabilities of a series of new closo-BnHn2- (n = 12, 14, 16, 18, 20, 22, 24, 30) was put forward with the aid of G96PW91/SHC calculations. Stabilities are related to the relative stabilized energies (RSE) and the 2e3c bound geometries of closo-BnHn2-. The structures in which a boron atom connects to four atoms up to seven are stable and appear in many borides because of the lower relative stabilized energy. In geometries, both triangular and quadrangular faces are in favor of forming the structures of closo-BnHn2-. The energies of optimized geometries support the existence of these new compounds. By employing both RSE and AE per boron atom in cage, the stabilities were studied to predict the probabilities of unknown clusters in existence. The electron-deficient clusters can be understood that the positive holes should be disperse to every triangular face and lead to share the holes, wherever there are not enough electrons to occupy them. The negative charges which anions carry distribute to 2e3c bonds to increase the stabilities.
基金Supported by:National Natural Science Foundation of China under Grant Nos.51378341,51427901 and 51678407National Key Research and Development Program under Grant No.2016YFC0701108
文摘Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault regions. In this study, a new method for identifying the velocity pulses is proposed, based on different trends of two parameters: the short-time energy and the short-time zero crossing rate of a ground motion record. A new pulse indicator, the relative energy zero ratio(REZR), is defined to qualitatively identify pulse-like features. The threshold for pulse-like ground motions is derived and compared with two other identification methods through statistical analysis. The proposed procedure not only shows good accuracy and efficiency when identifying pulse-like ground motions but also exhibits good performance for classifying records with high-frequency noise and discontinuous pulses. The REZR method does not require a waveform formula to express and fit the potential velocity pulses;it is a purely signal-based classification method. Finally, the proposed procedure is used to evaluate the contribution of pulse-like motions to the total input energy of a seismic record, which dramatically increases the seismic damage potential.
文摘Thermodynamics being among the most synthetic theories of physics and the mass-energy relation E = mc2 among the most general equations of science, it is somewhat surprising that this latter is not explicitly present in the laws of thermodynamics. Coupling this observation with the conceptual difficulties often felt in learning thermodynamics leads to the idea that both situations may have the same cause. On the basis of these clues, this paper is intended to provide complementary arguments to a hypothesis already presented. It consists of showing the existence of an imperfect compatibility between the conventional formulations of the first and second laws of thermodynamics and suggesting the need of the mass-energy relation to solving the problem.
基金Research special fund of the Ministry of Health public service sectors funded projects(201202010)The 12th Five-year Key Project of Beijing Education Sciences Research Institute(AAA12011)
文摘To identify target energy balance-related behaviors(ERBs),baseline data from 141overweight or obese schoolchildren(aged 8-14years old)was used to predict adiposity[body mass index(BMI)and fat percentage]one year later.The ERBs included a modified Dietary Approach to Stop Hypertension diet score(DASH score),leisure-time physical activity(PA,days/week),and leisure screen time(minutes/day).Several cardiometabolic variables were measured in the fasting state, including systolic blood pressure (SBP), diastolic blood pressure (DBP), blood glucose (GLU), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10875011 and 11075016)the National Basic Research Program of China (Grant No. 2007CB814805)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No. 201001)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003110007)
文摘We investigate the free energy relation for a system contacting with a non-Markovian heat bath and find that the validity of the relation sensitively depends on the non-Markovian memory effect, which is especially related go the initial preparation effect. This memory effect drives the statistical distribution of the system out of the initial preparation, even if the system starts from an equilibrium state. This leads to the violation of the free energy relation. A possible way of eliminating this memory effect is proposed.
基金supported by the National Basic Research Program of China(Grant No.2013CB430105)the Key Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-05)+1 种基金the National Natural Science Foundation of China(Grant No.41175060)the Project of CAMS,China(Grant No.2011LASW-B15)
文摘By employing the energy-Casimir method, a three-dimensional virtual pseudoenergy wave-activity relation for a moist atmosphere is derived from a complete system of nonhydrostatic equations in Cartesian coordinates. Since this system of equations includes the effects of water substance, mass forcing, diabatic heating, and dissipations, the derived wave-activity relation generalizes the previous result for a dry atmosphere. The Casimir function used in the derivation is a monotonous function of virtual potential vorticity and virtual potential temperature. A virtual energy equation is employed (in place of the previous zonal momentum equation) in the derivation, and the basic state is stationary but can be three-dimensional or, at least, not necessarily zonally symmetric. The derived wave-activity relation is further used for the diagnosis of the evolution and propagation of meso-scale weather systems leading to heavy rainfall. Our diagnosis of two real eases of heavy precipitation shows that positive anomalies of the virtual pseudoenergy wave-activity density correspond well with the strong precipitation and are capable of indicating the movement of the precipitation region. This is largely due to the cyclonic vorticity perturbation and the vertically increasing virtual potential temperature over the precipitation region.
基金Supported by National Natural Science Foundation of China(Grant Nos.11872320 and 12072294)
文摘Although there are methods for testing the stress-strain relation and strength,which are the most fundamental and important properties of metallic materials,their application to small-volume materials and tube components is lim-ited.In this study,based on energy density equivalence,a new dimensionless elastoplastic load-displacement model for compressed metal rings with isotropy and constitutive power law is proposed to describe the relations among the geometric dimensions,Hollomon law parameters,load,and displacement.Furthermore,a novel test method was developed to determine the elastic modulus,stress-strain relation,yield and tensile strength via ring compression test.The universality and accuracy of the method were verified within a wide range of imaginary materials using finite element analysis(FEA),and the results show that the stress-strain curves obtained by this method are consistent with those inputted in the FEA program.Additionally,a series of ring compression tests were performed for seven metallic materials.It was found that the stress-strain curves and mechanical properties predicted by the method agreed with the uniaxial tensile results.With its low material consumption,the ring compression test has the potential to be as an alternative to traditional tensile test when direct tension method is limited.
基金Supported by National Natural Science Foundation of China (No. 50778077 and No. 50608036)
文摘Based on pseudo strain energy density (PSED) and grey relation coefficient (GRC), an index is proposed to locate the damage of beam-type structures in time-domain. The genetic algorithm (GA) is utilized to identify the structural damage severity of confirmed damaged locations. Furthermore, a systematic damage identification program based on GA is developed on MATLAB platform. ANSYS is employed to conduct the finite element analysis of complicated civil engineering structures, which is embedded with interface technique. The two-step damage identification is verified by a finite element model of Xinxingtang Highway Bridge and a laboratory beam model based on polyvinylidens fluoride (PVDF). The bridge model was constructed with 57 girder segments, and simulated with 58 measurement points. The damaged segments were located accurately by GRC index regardless of damage extents and noise levels. With stiffness reduction factors of detected segments as variables, the GA program evolved for 150 generations in 6 h and identified the damage extent with the maximum errors of 1% and 3% corresponding to the noise to signal ratios of 0 and 5%, respectively. In contrast, the common GA-based method without using GRC index evolved for 600 generations in 24 h, but failed to obtain satisfactory results. In the laboratory test, PVDF patches were used as dynamic strain sensors, and the damage locations were identified due to the fact that GRC indexes of points near damaged elements were smaller than 0.6 while those of others were larger than 0.6. The GA-based damage quantification was also consistent with the value of crack depth in the beam model.
基金National Natural Science Foundation of China (40274023) and National Program for Key Science & Technology Projects (2004BA601B01-02-01).
文摘In this paper, progress in strain study of blocks and faults by GPS data are discussed, and the concept that active structures between blocks are the main body of crustal strain is clarified. By energy transfer principle of elastic mechanics, the relation between strain around faults and tectonic force on fault surfaces is set up and main body element model of crustal strain is constructed. Finally, the relation between mechanical evolution of model and seismogenic process of Kunlun earthquake (Ms=8.1) is discussed by continuous GPS data of datum stations. The result suggests that the relatively relaxed change under background of strong compressing and shearing may help to trigger moderate-strong earthquakes.
文摘Dark energy and dark matter in the universe are assigned to the positive and negative, respectively, “hidden” relative energies between the diquark and quark in nucleon in the scalar strong interaction hadron theory, SSI. The origin of the “darkness” is that quarks cannot be observed individually.
文摘Gulf Cooperation Council (GCC) countries are the main countries of the West Asia, they are rich in oil and natural gas, and very important in the world political and economic arena. In recent years, the trade volume between China and six GCC countries has been rising. The paper analyzes the importance and the prospect of China-GCC Free Trade Area negotiations. The two sides should take positive action to further close dialogue mechanism between the two sides, restart the negotiations on the free trade zone between China and GCC countries as soon as possible, and reach a win-win agreement.
文摘By taking into account the relative energy between the diquark and the quark in nucleons, the gravitational singularity in a black hole created from a collapsing neutron star can be removed;compatibility with quantum mechanics is restored. This black hole becomes a “black” neutron star. The negative relative energy identified as dark matter in the previous paper can account for the galaxy rotation curve. The positive relative energy identified as dark energy in the previous paper can explain the accelerating expansion of the universe. A possible scenario for cosmic ray generation is given.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11204012 and 91321103
文摘In our previous work [Phys. Rev. A 85 (2012) 044102], we studied the Berry phase of the ground state and exited states in the Lipkin model. In this work, using the Hellmann-Feynman theorem, we derive the relation between the energy gap and the Berry phase closed to the excited state quantum phase transition (ESQPT) in the Lipkin model. It is found that the energy gap is approximately linearly dependent on the Berry phase being closed to the ESQPT for large N. As a result, the critical behavior of the energy gap is similar to that of the Berry phase. In addition, we also perform a semiclassical qualitative analysis about the critical behavior of the energy gap.
文摘The mass-energy equation ?is derived in general from Newton’s equation of motion without use of electrodynamics, or Einstein’s Postulates which were presented in his superb 1905 paper on Special Relativity (SR). This was previously not thought to be possible. This novel derivation of an accelerated body of rest mass m0 is compared with the traditional SR inertial derivation. A discussion is given of pre-1905, electrostatic and electrodynamic derivations of the mass-energy relation yielding , as well as more recent ones. A concise pre-relativity history of the mass-energy relation is traced back to Newton in 1717.
文摘The theory of Relation provides an explanation for the Arcade 2 excess. It assumes that the isotropic radio emission measured by the Arcade 2 Collaboration, which is 5 - 6 times brighter than the expected contributions from known extra-galactic sources, is the residue of an immense primitive energy of ordinary matter released by a relativistic bang almost 100 million years after the big bang, which gave the mass-energy the missing gravity to activate contraction. This relativistic bang, via a Lorentz energy transformation, would have released enormous energy held to be the source of the powerful radio noise detected by the NASA researchers. This transformation would have simultaneously triggered the formation of the first stars from dense gas and the reionization of less dense neutral gas. This departs from the idea that continuous reionization began after the formation of the first stars. We emphasize the importance of primordial magnetic fields, which would have generated significant density fluctuations during recombination and acted as a direct seed for cosmic structures. The first stars and galaxies were bathed in strong magnetic fields that gave rise to the radio microwave din (boom) discovered by Arcade 2. These intense magnetic fields alter the trajectory of charged particles zooming near the speed of light, triggering the space roar and emitting radiation that forms a synchrotron radio background. The theory of Relation offers an alternative to the Lambda-CDM cosmological model, which has become the standard model of the big bang, which leads straight to the vacuum catastrophe.
基金National Key R&D Program of China under Grant No.2017YFC1500602 and 2016YFC0701108the National Natural Science Foundation of China under Grant No.51322801 and 51708161the Outstanding Talents Jump Promotion Plan of Basic Research of Harbin Institute of Technology,China Postdoctoral Science Foundation under Grant No.2016M601430
文摘Structures located in seismically active regions may be subjected to mainshock-aftershock(MSAS)sequences.present study selected two kinds of MSAS sequences,with one aftershock and two aftershocks,respectively.The aftershocksThe MSAS sequence with one aftershock exhibited a 10%to 30%hysteretic energy increase,whereas the MSAS sequence with two aftershocks presented a 20%to 40%hysteretic energy increase.Finally,a hysteretic energy prediction equation is proposed as a function of the vibration period,ductility value,and damping ratio to estimate hysteretic energy for mainshockaftershock sequences.
文摘The first-order revision and the approximation analytical formula of the energy levels for hydrogen-like atoms under the condition of Debye shielding potential are achieved by means of the Rayleigh–Schr?dinger perturbation theory; meanwhile, the corresponding recurrence relations are obtained from the use of the solution of power series. Based on the above solutions and with the use of energy consistent method the equivalent value of second-order reversion under the condition of Debye shielding potential is produced as well and the result is compared with the data obtained by the numerical method. Besides, the critical bond-state and corresponding cut-off conditions are discussed.