The construction of China-Mongolia-Russia high-speed railways is a strategic move to promote transportation infrastructure inter-connectivity between these countries, which will accelerate the implementation of the Ch...The construction of China-Mongolia-Russia high-speed railways is a strategic move to promote transportation infrastructure inter-connectivity between these countries, which will accelerate the implementation of the China-Mongolia-Russia Economic Corridor. However, well-planned China-Mongolia-Russia high-speed railways demand accurately identifying construction risks, scientifically evaluating risk levels, and mapping the spatial distribution of these risks. Therefore, this study established the integrated risk evaluation model(IREM) to scientifically evaluate the economic, social, and ecological risks of China-Mongolia-Russia high-speed railway construction and determine their magnitude and spatial distribution pattern. Based on this analysis, we propose designs for the east and west China-Mongolia-Russia high-speed railways and policy suggestions to mitigate construction risks. Suggestions include developing innovative cooperation of the "high-speed railway for resources and market", strengthening communication and technology dissemination, and applying innovative engineering techniques and setting buffers; establishing collaborative prevention and control systems to mitigate the three major ecological risks in the China, Mongolia, and Russia trans-border areas; and promoting economic integration by improving strategic coordination. In summary, this study provides scientific support for designing the China-Mongolia-Russia high-speed railways minimizing construction risks.展开更多
Large-scale transportation infrastructure construction in ecologically vulnerable areas such as the karst region of Southwest China requires estimation method for better project design.This research was carried out on...Large-scale transportation infrastructure construction in ecologically vulnerable areas such as the karst region of Southwest China requires estimation method for better project design.This research was carried out on a four-lane highway(the Guilin-Guiyang highway,G76)and a two-lane highspeed railway(the Guilin-Guiyang high-speed railway,GGHSR)in karst areas in Guizhou and Guangxi provinces.The highway and high-speed railway were constructed in the 2010 s and covered by Landsat images whose multispectral information could be used for research purposes.In this study,the severity of the impact and the CO2 emissions from the G76 and GGHSR construction were evaluated.Landsat images and field meteorological measurements were applied to calculate the surface functional parameters(surface temperature and surface wetness)and heat fluxes(latent,sensible and ground heat flux)before and during the highway and high-speed railway construction;the amount of CO2 emissions during the G76 and GGHSR construction were determined by using budget sheets,which record the detail consumptions of materials and energy.The results showed that the decrease of water evaporation from the highway and high-speed railway construction can reach up to 26.4 m3 and 20.1 m3 per kilometer,which corresponds to an average decrease in the vegetation cooling effect of 18.0 MWh per day per highway kilometer and 13.7 MWh per day per high-speed railway kilometer,respectively.At the meantime,the average CO2 emission densities from the G76 and GGHSR construction can reach up to 24813.7 and 36921.1 t/km,respectively.This study implied that extensive line constructions have a significant impact on the local climate and the energy balance,and it is evident that selecting and planting appropriate plant species can compensate for the adverse effects of line constructions in karst mountain regions.展开更多
High-speed railways have the merits of high speed, high transport capacity, low consumption of energy, less pollution, less occupation of land, and greater safety. The development of high-speed railways is suitable fo...High-speed railways have the merits of high speed, high transport capacity, low consumption of energy, less pollution, less occupation of land, and greater safety. The development of high-speed railways is suitable for the national conditions in China.The authors suggest that, with the Hu-Ning (Shanghai-Nanjing) section of the Jing-Hu (Beijing-Shanghai) Railway as the starting point, a high-speed dedicated passenger railway line be built to realize the separate transportation of passengers and goods, thus easing the strain on transport in East China, accumulating experience for the future development of high-speed railways, and bringing along the development of high and new technology industries.展开更多
Qinghe Railway Station is the largest passenger station along the Beijing-Zhangjiakou HSR and will serve as the originating station of this line during the A 2022 Winter Olympics.It is also one of the eight major pass...Qinghe Railway Station is the largest passenger station along the Beijing-Zhangjiakou HSR and will serve as the originating station of this line during the A 2022 Winter Olympics.It is also one of the eight major passenger stations in.Beijing.During the construction of this station,all units involved in the construction have made their effors to learn and understand the new concept of building up a“well-connected,filly-integrated,environment-friendly,passenger-oriented,economically-efficient,culturally-rich,inelligent and convenient”passenger station in the new era.Qinghe Railway Station of the Beijing-Zhangjiakou HSR was completed and opened to traffic by the end of 2019 through exploration of new-concept design innovation for passenger station construction in the new era,which was widely praised by the general public.The paper summarizes how the new design concept of passenger station construction is innovated and implemented during the construction of Qinghe Railway Station,thus providing a reference for the future construction of passenger stations.展开更多
Virtual construction has become an important approach to the high-quality development of high-speed railways,but existing methods have problems such as low efficiency in generating virtual construction scenes and the ...Virtual construction has become an important approach to the high-quality development of high-speed railways,but existing methods have problems such as low efficiency in generating virtual construction scenes and the inability to reuse construction knowledge.To support the rapid visual representation of multiple types of construction processes and construction methods,a template-based knowledge reuse method is proposed.The method includes using a component-based modeling mode to build body structure models of a high-speed railway project and generate a 3D scene;decomposing the construction process and building a construction process knowledge base;establishing joint linkage models of construction machinery and forming a construction method knowledge template;and fusing multiple types of information according to a time sequence to visualize the construction process.Based on the template-based knowledge reuse method,a prototype system was developed,and virtual construction experiments were carried out.The results show that this method achieves the reuse of construction knowledge at different levels including construction machinery level,construction method level,and work site level.Compared with animation software for virtual construction,this method improves the production efficiency by 87%.Moreover,this method can provide a multilevel knowledge reuse scheme for diversified virtual construction.展开更多
基金Science and Technology Basic Resources Survey Project of China,No.2017FY101304Major R&D Project of Chinese Academy of Sciences,No.ZDRW-ZS-2016-6-5National Natural Science Foundation of China,No.41701639
文摘The construction of China-Mongolia-Russia high-speed railways is a strategic move to promote transportation infrastructure inter-connectivity between these countries, which will accelerate the implementation of the China-Mongolia-Russia Economic Corridor. However, well-planned China-Mongolia-Russia high-speed railways demand accurately identifying construction risks, scientifically evaluating risk levels, and mapping the spatial distribution of these risks. Therefore, this study established the integrated risk evaluation model(IREM) to scientifically evaluate the economic, social, and ecological risks of China-Mongolia-Russia high-speed railway construction and determine their magnitude and spatial distribution pattern. Based on this analysis, we propose designs for the east and west China-Mongolia-Russia high-speed railways and policy suggestions to mitigate construction risks. Suggestions include developing innovative cooperation of the "high-speed railway for resources and market", strengthening communication and technology dissemination, and applying innovative engineering techniques and setting buffers; establishing collaborative prevention and control systems to mitigate the three major ecological risks in the China, Mongolia, and Russia trans-border areas; and promoting economic integration by improving strategic coordination. In summary, this study provides scientific support for designing the China-Mongolia-Russia high-speed railways minimizing construction risks.
基金funded by the Science and Technology Department of Guizhou Province (No. [2019]1427)Guizhou Provincial Forestry Department (No. [2017]15)National key research and development program of China (No.2016YFC0502605)
文摘Large-scale transportation infrastructure construction in ecologically vulnerable areas such as the karst region of Southwest China requires estimation method for better project design.This research was carried out on a four-lane highway(the Guilin-Guiyang highway,G76)and a two-lane highspeed railway(the Guilin-Guiyang high-speed railway,GGHSR)in karst areas in Guizhou and Guangxi provinces.The highway and high-speed railway were constructed in the 2010 s and covered by Landsat images whose multispectral information could be used for research purposes.In this study,the severity of the impact and the CO2 emissions from the G76 and GGHSR construction were evaluated.Landsat images and field meteorological measurements were applied to calculate the surface functional parameters(surface temperature and surface wetness)and heat fluxes(latent,sensible and ground heat flux)before and during the highway and high-speed railway construction;the amount of CO2 emissions during the G76 and GGHSR construction were determined by using budget sheets,which record the detail consumptions of materials and energy.The results showed that the decrease of water evaporation from the highway and high-speed railway construction can reach up to 26.4 m3 and 20.1 m3 per kilometer,which corresponds to an average decrease in the vegetation cooling effect of 18.0 MWh per day per highway kilometer and 13.7 MWh per day per high-speed railway kilometer,respectively.At the meantime,the average CO2 emission densities from the G76 and GGHSR construction can reach up to 24813.7 and 36921.1 t/km,respectively.This study implied that extensive line constructions have a significant impact on the local climate and the energy balance,and it is evident that selecting and planting appropriate plant species can compensate for the adverse effects of line constructions in karst mountain regions.
文摘High-speed railways have the merits of high speed, high transport capacity, low consumption of energy, less pollution, less occupation of land, and greater safety. The development of high-speed railways is suitable for the national conditions in China.The authors suggest that, with the Hu-Ning (Shanghai-Nanjing) section of the Jing-Hu (Beijing-Shanghai) Railway as the starting point, a high-speed dedicated passenger railway line be built to realize the separate transportation of passengers and goods, thus easing the strain on transport in East China, accumulating experience for the future development of high-speed railways, and bringing along the development of high and new technology industries.
文摘Qinghe Railway Station is the largest passenger station along the Beijing-Zhangjiakou HSR and will serve as the originating station of this line during the A 2022 Winter Olympics.It is also one of the eight major passenger stations in.Beijing.During the construction of this station,all units involved in the construction have made their effors to learn and understand the new concept of building up a“well-connected,filly-integrated,environment-friendly,passenger-oriented,economically-efficient,culturally-rich,inelligent and convenient”passenger station in the new era.Qinghe Railway Station of the Beijing-Zhangjiakou HSR was completed and opened to traffic by the end of 2019 through exploration of new-concept design innovation for passenger station construction in the new era,which was widely praised by the general public.The paper summarizes how the new design concept of passenger station construction is innovated and implemented during the construction of Qinghe Railway Station,thus providing a reference for the future construction of passenger stations.
基金supported by the National Natural Science Foundation of China(grant number 42201445,42201446,42271424 and U2034202)the Key Technologies R&D Program of Tianjin(grant number 20YFZCGX00710)the Key Research and Development Program of China Railway Design Corporation(grant number 2022A02538002).
文摘Virtual construction has become an important approach to the high-quality development of high-speed railways,but existing methods have problems such as low efficiency in generating virtual construction scenes and the inability to reuse construction knowledge.To support the rapid visual representation of multiple types of construction processes and construction methods,a template-based knowledge reuse method is proposed.The method includes using a component-based modeling mode to build body structure models of a high-speed railway project and generate a 3D scene;decomposing the construction process and building a construction process knowledge base;establishing joint linkage models of construction machinery and forming a construction method knowledge template;and fusing multiple types of information according to a time sequence to visualize the construction process.Based on the template-based knowledge reuse method,a prototype system was developed,and virtual construction experiments were carried out.The results show that this method achieves the reuse of construction knowledge at different levels including construction machinery level,construction method level,and work site level.Compared with animation software for virtual construction,this method improves the production efficiency by 87%.Moreover,this method can provide a multilevel knowledge reuse scheme for diversified virtual construction.