中草药残渣(Chinese herb-extraction residues,CHER)是一种不易被微生物利用的固体有机废弃物,厌氧消化时微生物降解的木质素会对纤维素形成物理屏蔽,阻碍微生物胞外酶水解催化作用。可见木质素降解是水解酸化首要步骤,木质素最初裂解...中草药残渣(Chinese herb-extraction residues,CHER)是一种不易被微生物利用的固体有机废弃物,厌氧消化时微生物降解的木质素会对纤维素形成物理屏蔽,阻碍微生物胞外酶水解催化作用。可见木质素降解是水解酸化首要步骤,木质素最初裂解需要分子氧存在,未经过好氧处理的木质素几乎不能在厌氧环境下被微生物降解。为此将厌氧发酵分成两相,即首先对CHER中温好氧水解产酸发酵,之后产甲烷发酵试验。结果表明,好氧水解发酵运行24 h时两相发酵累积甲烷产量达到最大值,VS产甲烷率为198 m L CH4 g-1VS,最大日产甲烷量为696 m L CH4 day-1,与单相发酵相比总甲烷产量提高30.3%。展开更多
以人参、赤芍和桂皮等混合中药渣为发酵原料,采用全混式厌氧反应器,在中温(35±1)℃,通过半连续厌氧发酵工艺,研究其发酵过程中不同有机负荷,沼气日产气量、甲烷含量、p H值、挥发性有机酸(VFA)和总无机碳(TIC)等参数变化相互关系...以人参、赤芍和桂皮等混合中药渣为发酵原料,采用全混式厌氧反应器,在中温(35±1)℃,通过半连续厌氧发酵工艺,研究其发酵过程中不同有机负荷,沼气日产气量、甲烷含量、p H值、挥发性有机酸(VFA)和总无机碳(TIC)等参数变化相互关系。结果表明:厌氧消化过程呈现5个阶段,即发酵启动期、增长期、稳定期、超负荷期和恢复期;反应器高效稳定运行可承受的中药渣最大有机负荷为8.0 g TS·(L·d)^(-1),系统p H值稳定在7.0左右,沼气日产气量8.38 L,容积产气率为1.68 L·(d·L)^(-1),原料产沼气能力262 m L·(TS g·d)^(-1),VS去除率为20.69%。有机负荷为10.0 g TS·(L·d)^(-1)时超负荷运行,沼气产量急剧下降,系统运行稳定性被破坏。因此,在中药渣厌氧消化过程中一定要控制有机负荷在最佳数值,实时监测反应器运行过程中的各参数变化,及时做出调整,保证工程的高效稳定运行。展开更多
文摘中草药残渣(Chinese herb-extraction residues,CHER)是一种不易被微生物利用的固体有机废弃物,厌氧消化时微生物降解的木质素会对纤维素形成物理屏蔽,阻碍微生物胞外酶水解催化作用。可见木质素降解是水解酸化首要步骤,木质素最初裂解需要分子氧存在,未经过好氧处理的木质素几乎不能在厌氧环境下被微生物降解。为此将厌氧发酵分成两相,即首先对CHER中温好氧水解产酸发酵,之后产甲烷发酵试验。结果表明,好氧水解发酵运行24 h时两相发酵累积甲烷产量达到最大值,VS产甲烷率为198 m L CH4 g-1VS,最大日产甲烷量为696 m L CH4 day-1,与单相发酵相比总甲烷产量提高30.3%。
文摘以人参、赤芍和桂皮等混合中药渣为发酵原料,采用全混式厌氧反应器,在中温(35±1)℃,通过半连续厌氧发酵工艺,研究其发酵过程中不同有机负荷,沼气日产气量、甲烷含量、p H值、挥发性有机酸(VFA)和总无机碳(TIC)等参数变化相互关系。结果表明:厌氧消化过程呈现5个阶段,即发酵启动期、增长期、稳定期、超负荷期和恢复期;反应器高效稳定运行可承受的中药渣最大有机负荷为8.0 g TS·(L·d)^(-1),系统p H值稳定在7.0左右,沼气日产气量8.38 L,容积产气率为1.68 L·(d·L)^(-1),原料产沼气能力262 m L·(TS g·d)^(-1),VS去除率为20.69%。有机负荷为10.0 g TS·(L·d)^(-1)时超负荷运行,沼气产量急剧下降,系统运行稳定性被破坏。因此,在中药渣厌氧消化过程中一定要控制有机负荷在最佳数值,实时监测反应器运行过程中的各参数变化,及时做出调整,保证工程的高效稳定运行。