期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Data Masking for Chinese Electronic Medical Records with Named Entity Recognition 被引量:1
1
作者 Tianyu He Xiaolong Xu +3 位作者 Zhichen Hu Qingzhan Zhao Jianguo Dai Fei Dai 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3657-3673,共17页
With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so ... With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so this reality drives the conversion of paper medical records to electronic medical records.Electronic medical records are the basis for establishing a smart hospital and an important guarantee for achieving medical intelligence,and the massive amount of electronic medical record data is also an important data set for conducting research in the medical field.However,electronic medical records contain a large amount of private patient information,which must be desensitized before they are used as open resources.Therefore,to solve the above problems,data masking for Chinese electronic medical records with named entity recognition is proposed in this paper.Firstly,the text is vectorized to satisfy the required format of the model input.Secondly,since the input sentences may have a long or short length and the relationship between sentences in context is not negligible.To this end,a neural network model for named entity recognition based on bidirectional long short-term memory(BiLSTM)with conditional random fields(CRF)is constructed.Finally,the data masking operation is performed based on the named entity recog-nition results,mainly using regular expression filtering encryption and principal component analysis(PCA)word vector compression and replacement.In addi-tion,comparison experiments with the hidden markov model(HMM)model,LSTM-CRF model,and BiLSTM model are conducted in this paper.The experi-mental results show that the method used in this paper achieves 92.72%Accuracy,92.30%Recall,and 92.51%F1_score,which has higher accuracy compared with other models. 展开更多
关键词 Named entity recognition chinese electronic medical records data masking principal component analysis regular expression
下载PDF
Overview of CCKS 2020 Task 3: Named Entity Recognition and Event Extraction in Chinese Electronic Medical Records 被引量:7
2
作者 Xia Li Qinghua Wen +2 位作者 Hu Lin Zengtao Jiao Jiangtao Zhang 《Data Intelligence》 2021年第3期376-388,共13页
The China Conference on Knowledge Graph and Semantic Computing(CCKS)2020 Evaluation Task 3 presented clinical named entity recognition and event extraction for the Chinese electronic medical records.Two annotated data... The China Conference on Knowledge Graph and Semantic Computing(CCKS)2020 Evaluation Task 3 presented clinical named entity recognition and event extraction for the Chinese electronic medical records.Two annotated data sets and some other additional resources for these two subtasks were provided for participators.This evaluation competition attracted 354 teams and 46 of them successfully submitted the valid results.The pre-trained language models are widely applied in this evaluation task.Data argumentation and external resources are also helpful. 展开更多
关键词 chinese electronic medical records Event extraction Named entity recognition Clinical text CCKS
原文传递
Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record 被引量:1
3
作者 MA Qunsheng CEN Xingxing +1 位作者 YUAN Junyi HOU Xumin 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第4期494-502,共9页
Electronic medical record (EMR) containing rich biomedical information has a great potential in disease diagnosis and biomedical research. However, the EMR information is usually in the form of unstructured text, whic... Electronic medical record (EMR) containing rich biomedical information has a great potential in disease diagnosis and biomedical research. However, the EMR information is usually in the form of unstructured text, which increases the use cost and hinders its applications. In this work, an effective named entity recognition (NER) method is presented for information extraction on Chinese EMR, which is achieved by word embedding bootstrapped deep active learning to promote the acquisition of medical information from Chinese EMR and to release its value. In this work, deep active learning of bi-directional long short-term memory followed by conditional random field (Bi-LSTM+CRF) is used to capture the characteristics of different information from labeled corpus, and the word embedding models of contiguous bag of words and skip-gram are combined in the above model to respectively capture the text feature of Chinese EMR from unlabeled corpus. To evaluate the performance of above method, the tasks of NER on Chinese EMR with “medical history” content were used. Experimental results show that the word embedding bootstrapped deep active learning method using unlabeled medical corpus can achieve a better performance compared with other models. 展开更多
关键词 deep active learning named entity recognition(NER) information extraction word embedding chinese electronic medical record(EMR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部