Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled...Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.展开更多
Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of se...Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of seed germination. The results showed thatas to the available rate of allelochemicals, the pressure and temperature of extraction were themost important factors. The allelochemicals of Chinese-fir root extracted by pure CO_2 and ethanolmixed with CO_2 have different allelopathic activities to seed germination, and the allelochemicalsextracted by ethanol mixed with CO_2 had stronger inhibitory effects on seed germination than thatextracted by pure CO_2.展开更多
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), a fast-growing, ever-green conifer tree with high yield and excellent quality, is the most important tree species of timber plantations in subtropical China. We inv...Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), a fast-growing, ever-green conifer tree with high yield and excellent quality, is the most important tree species of timber plantations in subtropical China. We investigated the characteristics of biomass, litterfall and nutrient fluxes in the 8, 14 and 24 year-old stands, representing the young, middle-aged and mature stands. The results showed that Chinese fir plantations in central Fujian province had high productivity, and the proportion of stem mass in total biomass was between 50%-70%. Chinese fir was low nutrient-return tree species with litterfall. Nutrient withdrawal from senescing needles was a strong age-dependence for nitrogen, phosphorous and potassium in Chinese fir. With a management system of such short-rotation and continuously pure-crop planting, harvesting timber can lead to great nutrient loss, which may be one of the causes for site degradation.展开更多
An investigation on soil organic carbon, total N and P, NO3-N, available P, microbial biomass C, N and P, basal respiration and metabolic quotients (qCO2) was conducted to compare differences in soil microbial prope...An investigation on soil organic carbon, total N and P, NO3-N, available P, microbial biomass C, N and P, basal respiration and metabolic quotients (qCO2) was conducted to compare differences in soil microbial properties and nutrients between 15-year-old pure Chinese fir (Cunninghamia lanceolata) and two mixed Chinese fir plantations (mixed plantations with Alnus crernastogyne, mixed plantations with Kalopanax septemlobus) at Huitong Experimental Station of Forest Ecology (26°45′N latitude and 109°30′E longitude), Chinese Academy of Sciences in May, 2005. Results showed that the concentrations of soil organic carbon, total N, NO3^--N, total P and available P in mixed plantations were higher than that in pure plantation. Soil microbial biomass N in two mixed plantations was averagely higher 69% and 61% than that in pure plantation at the 0-10 cm and 10-20 cm soil depth, respectively. Soil microbial biomass C, P and basal respiration in mixed plantations were higher 11%, 14% and 4% at the 0-10 cm soil depth and 6%, 3% and 3% at the 10-20 cm soil depth compared with pure plantation. However, soil microbial C: N ratio and qCO2 were averagely lower 34% and 4% in mixed plantations than pure plantation. Additionally, there was a closer relation between soil microbial biomass and soil nutrients than between basal respiration, microbial C: N ratio and qCO2 and soil nutrients. In conclusion, introduction of broad-leaved tree species into pure coniferous plantation improved soil microbial properties and soil fertility, and can be helpful to restore degraded forest soil.展开更多
Three steam distillation devices (D-1, D-2 and D-4) or one simultaneous distillation (D-3, water-diethyl ether) as well as the process of CO2-SFE (Supercritical fluid extraction) were adopted in extraction of essentia...Three steam distillation devices (D-1, D-2 and D-4) or one simultaneous distillation (D-3, water-diethyl ether) as well as the process of CO2-SFE (Supercritical fluid extraction) were adopted in extraction of essential oils from Chinese-fir (Cunninghamia lancedata (Lamb) Hook.) and the chemical components of the extracted essential oil were analyzed by Gas chromatograph-MS analyses. The results showed that the essential oil could be almost extracted out within 2 hours and the device-3 had the highest extraction efficiency. The major chemical component of the oil was cedrol. The yield of the extracted essential oils from Chinese fir decreased gradually with the increase of the distillation time. The best condition for extraction by means of CO2-SFE is 100 kg·cm?2 in pressure and 40°C in temperature for. Keywords Chinese fir - Essential oil - Cedrol - Supercritical fluid extraction CLC number S781.4 Document code A Foundation item: This paper was support by the Key Foundation Research Project (G1999016001) of China and the Japan International Cooperation AgencyBiography: HUANG Luo-hua (1957-), male, Research associate, Research Institute of Wood Industry, Chinese Academy of forestry, Beijing 100091, P. R. ChinaResponsible editor: Song Funan展开更多
Based on the measurement of monthly litterfall and their gross calor ic values, the seasonal dynamics of energy return through litterfall were determ ined in a pure and a mixed T. odorum (Tsoongiodendron odorum Chun) ...Based on the measurement of monthly litterfall and their gross calor ic values, the seasonal dynamics of energy return through litterfall were determ ined in a pure and a mixed T. odorum (Tsoongiodendron odorum Chun) forests with Ch inese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian Provinc e. Annual ene rgy return through litterfall was estimated as 12.648×10 6J·m -2 for the mixed fo rest, being 4 2% higher than that of the pure forest, and a large proportion of the energy return comprised leaf litter. The conversion efficiency of solar rad i ation energy into litterfall was 0 56% for mixed forest and 0 54% for pure for es t, respectively. The monthly energy flux in litterfall of Chinese fir showed a t hree-apex curve, peaked in March, August and December, respectively, which was s imilar to that in various fractions of leaf, twig, flower and fruit litter. The consistency in monthly patterns among different litter fractions of Chinese fir was attributed to their solid connections all the while. The monthly energy flux in litterfall of T. odorum culminated in January, May and August, the same was true for its leaf and twig litter. However, energy flux in flower litter only oc curred during March to May and that in fruit litter appeared in January and Marc h. The monthly dynamics of energy flux through litterfall of the two forests wer e both determined by their respective litterfall pattern of Chinese fir. Seasona l energy flux in litterfall for both mixed and pure forests followed the sequenc e of spring>winter>summer>autumn, but fluctuations in the former were less disti nct than those in the latter.展开更多
The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating deg...The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating degree, pulp consistency and shearing velocity. With the increasing of pulp consistency, the apparent viscosity of pulp increased gradually. Beating degree of pulp had an effect on microstructure of pulp. The apparent viscosity of pulp declined as beating degree of pulp increased, and the apparent viscosity of pulp fell along with the shearing velocity increasing. Based on the results, the rheological models are set up. The models showed that the fluid types of the low consistency pulp could be described as pseudoplastics fluids (non-Newtonian fluids).展开更多
In order to discuss the mechanisms of permanent fixation of wood compression set , compressed wood of Chinese fir (Cunninghamia lanceolata) was irradiated by gamma rays from 60 Co. The irradiation doses wer...In order to discuss the mechanisms of permanent fixation of wood compression set , compressed wood of Chinese fir (Cunninghamia lanceolata) was irradiated by gamma rays from 60 Co. The irradiation doses were 0 (for match specim ens), 10 3, 5×10 3, 10 4, 5×10 4, 10 5, 5×10 5, 10 6, 5×10 6 Gy, res pectively. Then the weight loss, the equilibrium moisture content (EMC), the rec overy of wood compression set after adsorption (RSA) and the recovery after imme rsion in water (RSW), as well as the creep behaviour under a dry specimen condit ion and under an adsorption and subsequent desorption condition were measured an d discussed. This research proves that the doses of gamma irradiation have great effect on weight loss, EMC, RSA, RSW of irradiated compressed wood of Chinese f ir. The weight loss and the EMC increase, the RSA and the RSW fall drastically w hen the irradiation doses exceed 10 6 Gy. Both the instantaneous compliance and the creep compliance of the irradiated specimens under the two measurement cond itions show the general trend of increase with the increase of gamma irradiation doses. It can be deduced that decomposition or decrystallization reactions happ en in the wood cell wall at high gamma irradiation doses, especially at doses of around 5×10 6 Gy. In addition, this research proves that decomposition of mai n components of cell wall of compressed wood will lead to fixation of compressio n set of wood to a certain degree.展开更多
The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatme...The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatment had significant effect on the change curves of contact angle of Chinese fir wood due to the change curves of contact angle became more centralized and orderly after the specimens heat treated at 180 ℃. Compared with the untreated wood, the contact angle in-creased from 51° to 124° after 4 h treatment, and hydroxyl absorbance of hy-drophilic functional groups decreased from 2.08 to 1.63, while carbonyl absorbance from 0.92 to 0.62. The surface roughness has not significant influence on the con-tact angle. Heat treatment of the Chinese fir caused surface morphological change, which produced hol owed-out phenomenon. The increased surface contact angle caused by heat treatment can be used for outdoor and sauna facilities.展开更多
Allelochemicals of Chinese-fir root was extracted by technology of supercritical CO2 extraction under orthogonal experiment design, and it was used to analyze allelopathic activity of Chinese-fir through bioassay of s...Allelochemicals of Chinese-fir root was extracted by technology of supercritical CO2 extraction under orthogonal experiment design, and it was used to analyze allelopathic activity of Chinese-fir through bioassay of seed germination. The results showed that as to the available rate of allelochemicals, the pressure and temperature of extraction were the most important factors. The allelochemicals of Chinese-fir root extracted by pure CO2 and ethanol mixed with CO2 have different allelopathic activities to seed germination, and the allelochemicals extracted by ethanol mixed with CO2 had stronger inhibitory effects on seed germination than that extracted by pure CO2.展开更多
Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearit...Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN.展开更多
The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of success...The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations on the stability of SOC and its availability to microbes by adopting the two-step hydrolysis with H2SO4 and density fractionation. The results showed that successive rotations of Chinese fir decreased the quantity of total SOC, recalcitrant fraction, and carbohydrates in Labile Pool I (LPI), and microbial properties evidently, especially at 0-10 cm horizon. However, cellulose included in Labile Pool Ⅱ (LP Ⅱ) and the cellulose/total carbohydrates ratio increased in successive rotations of Chinese fir. The noncellulose of carbohydrates included in LPI maybe highly available to soil microbial biomass. Hence the availability of SOC to microbial biomass declined over the successive rotations. Although there was no significant change in recalcitrance of SOC over the successive rotations of Chinese fir, the percentage of heavy fraction to total SOC increased, suggesting that the degree of physical protection for SOC increased and SOC became more stable over the successive rotations. The degradation of SOC quality in successive rotation soils may be attributed to worse environmental conditions resulted from disturbance that related to "slash and burn" site preparation. Being highly correlated with soil microbial properties, the cellulose/total carbohydrates ratio as an effective indicator of changes in availability of SOC to microbial biomass brought by management practices in forest soils.展开更多
Phenolic acids are secondary metabolites of plants that significantly affect nutrient cycling processes.To investigate such effects,the soil available nitrogen(N)content,phenolic acid content,and net N mineralization ...Phenolic acids are secondary metabolites of plants that significantly affect nutrient cycling processes.To investigate such effects,the soil available nitrogen(N)content,phenolic acid content,and net N mineralization rate in three successive rotations of Chinese fir plantations in subtropical China were investigated.Net N mineralization and nitrification rates in soils treated with phenolic acids were measured in an ex situ experiment.Compared with first-rotation plantations(FCP),the contents of total soil nitrogen and nitrate in second(SCP)-and third-rotation plantations(TCP)decreased,and that of soil ammonium increased.Soil net N mineralization rates in the second-and third-rotation plantations also increased by 17.8%and 39.9%,respectively.In contrast,soil net nitrification rates decreased by 18.0%and 25.0%,respectively.The concentrations of total phenolic acids in the FCP soils(123.22±6.02 nmol g^-1)were 3.0%and 17.9%higher than in the SCP(119.68±11.69 nmol g^-1)and TCP(104.51±8.57 nmol g^-1,respectively).The total content of phenolic acids was significantly correlated with the rates of net soil N mineralization and net nitrification.The ex situ experiment showed that the net N mineralization rates in soils treated with high(HCPA,0.07 mg N kg^-1 day^-1)and low(LCPA,0.18 mg N kg^-1 day^-1)concentrations of phenolic acids significantly decreased by 78.6%and 42.6%,respectively,comparing with that in control(0.32 mg N kg^-1 day^-1).Soil net nitrification rates under HCPA and LCPA were significantly higher than that of the control.The results suggested that low contents of phenolic acids in soil over successive rotations increased soil net N mineralization rates and decreased net nitrification rates,leading to consequent reductions in the nitrate content and enhancement of the ammonium content,then resulting in enhancing the conservation of soil N of successive rotations in Chinese fir plantation.展开更多
An investigation and on 13 year old (1984~1996) Chinese fir and Tsoong's tree mixed forests in Jianou City, Fujian Province, China was carried out to compare the influences of different interplanting types of i...An investigation and on 13 year old (1984~1996) Chinese fir and Tsoong's tree mixed forests in Jianou City, Fujian Province, China was carried out to compare the influences of different interplanting types of individual tree tree, row row, row strip (three rows) and pure Chinese fir stands on soil properties. Compared with the pure stands of Chinese fir, the mixed stands exerted a positive effect on soil fertility, with increases in soil organic matter, total N, available P and available K. Moreover, improvements were also observed in soil enzymatic activities, aggregate structure, structure stability, status of soil porosity, soil aeration and penetrability in mixed stands. The row row interplanted stands had the best effect on tree growth and soil properties among these mixed forests. In the southern subtropical region, the spreading of the row row mixing model of the two tree species would be helpful to preventing the soil from fertility deterioration caused by successive plantation of Chinese fir.展开更多
Prescribed fire has now become the usual management practice in the Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation in southern China. Heat generated during fire may affect carbon (C) dynam- ics i...Prescribed fire has now become the usual management practice in the Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation in southern China. Heat generated during fire may affect carbon (C) dynam- ics in soils. We investigated the microbial biomass C (MBC) and microbial respiration in two Chinese fir forest soils (one is not exposed to fire for the past 88 years, and the other is recently exposed to prescribed fire) after soil heating (100 and 200 ℃) under three moisture regimes [25, 50 and 75 % of water holding capacity (WHC)]. For both soils, significant reduction in MBC with increasing heating temperature was found. Soils without exposing to fire previously had significantly greater MBC concentra- tion than the fire-exposed soils when heated at 100 or 200 ℃. Lower soil water content resulted in higher MBC concentrations in both soils. In contrast, both soils had the highest soil microbial respiration rate at 50 % WHC. Soils without exposing to fire previously had the greatest microbial respiration rates at 200 ℃, while the fire-ex- posed soils when heated at 100 ℃ had greatest microbialrespiration rates. During 14-days post-heat incubation, soil MBC in both soils was greatest after heating at 200 ℃ and 25 % WHC. However, soil previously exposed to fire had the lowest CO2 evolution when incubated at 25 % WHC.展开更多
A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil p...A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil properties with pre-burn levels. After fire, nutrient (N, P and K) removal from burning residues wasestimated at 302.5 kg ha-1 in the CF and 644.8 kg ha-1 in the EB. Fire reduced the topsoil capitals of totalN and P by about 20% and 10%, respectively, in both forests, while K capital was increased in the topsoils ofboth forests following fire. Total site nutrient loss through surface erosion was 28.4 kg (N) ha-1, 8.4 kg (P)ha-1 and 328.7 kg (K) ha-1 in the CF. In the EB, the losses of total N, P and K were 58.5, 10.5 and 396.3kg ha-1, respectively. Improvement of soil structure and increase in mineralization of nutrients associatedwith increased microbe number and enzyme activities and elevated soil respiration occurred 5 days after fire.However, organic matter and available nutrient contents and most of other soil parameters declined one yearafter fire on the burned CF and EB topsoils. These results suggest that short-term site productivity canbe stimulated immediately, but reduced subsequently by soil and water losses, especially in South China,where high-intensity precipitation, steep slopes and fragile soil can be expected. Therefore, the silviculturalmeasurements should be developed in plantation management.展开更多
The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soilsamples from different forest stands: the first and second plantations of Chinese fir, evergreen broad-leavedfores...The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soilsamples from different forest stands: the first and second plantations of Chinese fir, evergreen broad-leavedforests, and clear-cut and burnt Chinese fir land located at Xihou Village, Nanping of Fujian Province. Thesoils were humic red soil originated from weathered coarse granite of the Presinian system. Soil PH, CEC,base saturation, exchangeable Ca ̄(2+), exchangeable Mg ̄(2+) and Al-P declined after continuous plantation ofChinese fir. The same trends were also found in the soils under broad-leaved stands and slash burnt lands.The explantation was that not merely the biological nature of the Chinese fir itself but the natural leachingof nutrients, soil erosion and nutrient losses due to clear cutting and slash burning of the preceding plantationcaused the soil deterioration. Only some of main soil nutrients decreased after continuons plantation ofChinese fir, depending on specific silvicultural system, which was different from the conclusions in some otherreports which showed that all main nutrients, such as OM, total N, available P and available K decreased.Some neccessary steps to make up for the lost base, to apply P fertilizer and to avoid buring on clear cutlands could be taken to preventsoil degradation and yield decline in the system of continuous plantation ofChinese fir.展开更多
Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern Ch...Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern China, were compared before clearcutting, with the effect of slash burning on organic C and total N in the top 10 cm of soil before and after burning also being evaluated. Prior to clearcutting CF forest had significantly lower (P 〈0.05) organic C and total N in the soil (0-100 cm) compared to EB forest with approximately 60% of the C and N at the two forest sites stored at the 0 to 40 cm soil. In post-burn samples of the 0-10 cm depth at 5 days, 1 year, and 5 years for CF and EB forests, significantly lower levels (P 〈0.05) of organic C and total N than those in the pre-burn samples were observed. Compared to the pre-burn levels, at post-burn year 5, surface soil organic C storage was only 85% in CF forest and 72% in EB forest, while total N storage was 77% for CF forest and 73% for EB forest. Slash burning caused marked long-term changes in surface soil C and N in the two forest types.展开更多
We used spatial, global trend and post-blocking analysis to examine the effectiveness of a progeny trial in a tree breeding program for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) on a hilly site with an en...We used spatial, global trend and post-blocking analysis to examine the effectiveness of a progeny trial in a tree breeding program for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) on a hilly site with an environmental gradient from hill top to bottom. Diameter at breast height (DBH) and tree height data had significant spatial auto-correlations among rows and columns. Adding a firstorder separable autoregressive term more effectively modelled the spatial variation than did the incomplete block (IB) model used for the experimental design. The spatial model also accounted for effects of experimental design factors and greatly reduced residual variances. The spatial analysis rel- ative to the IB analysis improved estimation of genetic parameters with the residual variance reduced 13 and 19% for DBH and tree height, respectively; heritability increased 35 and 51% for DBH and tree height, respectively; and genetic gain improved 3-5%. Fitting global trend and postblocking did not improve the analyses under IB model. The use of a spatial model or combined with a design model is recommended for forest genetic trials, particularly with global trend and local spatial variation of hilly sites.展开更多
Soil samples collected from the surface soil (0-10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping Fujian, China were incubated for 90 days at the temperatures of 15℃, 25℃ and 35℃ ...Soil samples collected from the surface soil (0-10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping Fujian, China were incubated for 90 days at the temperatures of 15℃, 25℃ and 35℃ in laboratory. The soil CO2 evolution rates were measured at the incubation time of 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80 and 90 days. The results showed that CO2 evolution rates of soil samples varied significantly with incubation time and temperature during the incubation period. Mean CO2 evolution rate and cumulative amount of CO2 evolution from soil were highest at 35℃, followed by those at 25℃, and 15℃. Substantial differences in CO2 evolution rate were found in Q10 values calculated for the 2nd and 90th day of incubation. The Q10 value for the average CO2 evolution rate was 2.0 at the temperature range of 15-25℃, but it decreased to 1.2 at 25 35℃. Soil CO2 evolution rates decreased with the incubation time. The cumulative mineralized C at the end of incubation period (on the 90th day) was less than 10% of the initial C amounts prior to incubation.展开更多
基金supported by the National Natural Science Foundation of China(No.32192434)the National Key Research and Development Program of China(No.2022YFF1303003).
文摘Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.
基金This paper was supported by Natural Science Foundation of Fujian Province (B0010020)
文摘Allelochemicals of Chinese-fir root was extracted by technology ofsupercritical CO_2 extraction under orthogonal experiment design, and it was used to analyzeallelopathic activity of Chinese-fir through bioassay of seed germination. The results showed thatas to the available rate of allelochemicals, the pressure and temperature of extraction were themost important factors. The allelochemicals of Chinese-fir root extracted by pure CO_2 and ethanolmixed with CO_2 have different allelopathic activities to seed germination, and the allelochemicalsextracted by ethanol mixed with CO_2 had stronger inhibitory effects on seed germination than thatextracted by pure CO_2.
基金This research was sponsored by National Natural Science Foundation of China (Grant No. 39630240 and 3000132).
文摘Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), a fast-growing, ever-green conifer tree with high yield and excellent quality, is the most important tree species of timber plantations in subtropical China. We investigated the characteristics of biomass, litterfall and nutrient fluxes in the 8, 14 and 24 year-old stands, representing the young, middle-aged and mature stands. The results showed that Chinese fir plantations in central Fujian province had high productivity, and the proportion of stem mass in total biomass was between 50%-70%. Chinese fir was low nutrient-return tree species with litterfall. Nutrient withdrawal from senescing needles was a strong age-dependence for nitrogen, phosphorous and potassium in Chinese fir. With a management system of such short-rotation and continuously pure-crop planting, harvesting timber can lead to great nutrient loss, which may be one of the causes for site degradation.
基金This study was supported by Chinese Academy of Science Program (KZCX2-YW-405)the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘An investigation on soil organic carbon, total N and P, NO3-N, available P, microbial biomass C, N and P, basal respiration and metabolic quotients (qCO2) was conducted to compare differences in soil microbial properties and nutrients between 15-year-old pure Chinese fir (Cunninghamia lanceolata) and two mixed Chinese fir plantations (mixed plantations with Alnus crernastogyne, mixed plantations with Kalopanax septemlobus) at Huitong Experimental Station of Forest Ecology (26°45′N latitude and 109°30′E longitude), Chinese Academy of Sciences in May, 2005. Results showed that the concentrations of soil organic carbon, total N, NO3^--N, total P and available P in mixed plantations were higher than that in pure plantation. Soil microbial biomass N in two mixed plantations was averagely higher 69% and 61% than that in pure plantation at the 0-10 cm and 10-20 cm soil depth, respectively. Soil microbial biomass C, P and basal respiration in mixed plantations were higher 11%, 14% and 4% at the 0-10 cm soil depth and 6%, 3% and 3% at the 10-20 cm soil depth compared with pure plantation. However, soil microbial C: N ratio and qCO2 were averagely lower 34% and 4% in mixed plantations than pure plantation. Additionally, there was a closer relation between soil microbial biomass and soil nutrients than between basal respiration, microbial C: N ratio and qCO2 and soil nutrients. In conclusion, introduction of broad-leaved tree species into pure coniferous plantation improved soil microbial properties and soil fertility, and can be helpful to restore degraded forest soil.
基金The Key Foundation Research Project (G1999016001) of China and the Japan International Cooperation Agency
文摘Three steam distillation devices (D-1, D-2 and D-4) or one simultaneous distillation (D-3, water-diethyl ether) as well as the process of CO2-SFE (Supercritical fluid extraction) were adopted in extraction of essential oils from Chinese-fir (Cunninghamia lancedata (Lamb) Hook.) and the chemical components of the extracted essential oil were analyzed by Gas chromatograph-MS analyses. The results showed that the essential oil could be almost extracted out within 2 hours and the device-3 had the highest extraction efficiency. The major chemical component of the oil was cedrol. The yield of the extracted essential oils from Chinese fir decreased gradually with the increase of the distillation time. The best condition for extraction by means of CO2-SFE is 100 kg·cm?2 in pressure and 40°C in temperature for. Keywords Chinese fir - Essential oil - Cedrol - Supercritical fluid extraction CLC number S781.4 Document code A Foundation item: This paper was support by the Key Foundation Research Project (G1999016001) of China and the Japan International Cooperation AgencyBiography: HUANG Luo-hua (1957-), male, Research associate, Research Institute of Wood Industry, Chinese Academy of forestry, Beijing 100091, P. R. ChinaResponsible editor: Song Funan
基金SupportedbytheFoundationofPost doctoralResearchof China (2 0 0 0F0 0 4 )
文摘Based on the measurement of monthly litterfall and their gross calor ic values, the seasonal dynamics of energy return through litterfall were determ ined in a pure and a mixed T. odorum (Tsoongiodendron odorum Chun) forests with Ch inese fir (Cunninghamia lanceolata (Lamb.) Hook.) in Sanming, Fujian Provinc e. Annual ene rgy return through litterfall was estimated as 12.648×10 6J·m -2 for the mixed fo rest, being 4 2% higher than that of the pure forest, and a large proportion of the energy return comprised leaf litter. The conversion efficiency of solar rad i ation energy into litterfall was 0 56% for mixed forest and 0 54% for pure for es t, respectively. The monthly energy flux in litterfall of Chinese fir showed a t hree-apex curve, peaked in March, August and December, respectively, which was s imilar to that in various fractions of leaf, twig, flower and fruit litter. The consistency in monthly patterns among different litter fractions of Chinese fir was attributed to their solid connections all the while. The monthly energy flux in litterfall of T. odorum culminated in January, May and August, the same was true for its leaf and twig litter. However, energy flux in flower litter only oc curred during March to May and that in fruit litter appeared in January and Marc h. The monthly dynamics of energy flux through litterfall of the two forests wer e both determined by their respective litterfall pattern of Chinese fir. Seasona l energy flux in litterfall for both mixed and pure forests followed the sequenc e of spring>winter>summer>autumn, but fluctuations in the former were less disti nct than those in the latter.
基金This study was sponsored by the Research Funding for Outstanding Young University Faculty of China Ministry of Education (No. 2001-39), Fujian Provincial Innovation Fundation for Young Science and Technology Talents (No. 2004J012), and the National Natural Science Funda-tion of China (No. 30571461)
文摘The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating degree, pulp consistency and shearing velocity. With the increasing of pulp consistency, the apparent viscosity of pulp increased gradually. Beating degree of pulp had an effect on microstructure of pulp. The apparent viscosity of pulp declined as beating degree of pulp increased, and the apparent viscosity of pulp fell along with the shearing velocity increasing. Based on the results, the rheological models are set up. The models showed that the fluid types of the low consistency pulp could be described as pseudoplastics fluids (non-Newtonian fluids).
文摘In order to discuss the mechanisms of permanent fixation of wood compression set , compressed wood of Chinese fir (Cunninghamia lanceolata) was irradiated by gamma rays from 60 Co. The irradiation doses were 0 (for match specim ens), 10 3, 5×10 3, 10 4, 5×10 4, 10 5, 5×10 5, 10 6, 5×10 6 Gy, res pectively. Then the weight loss, the equilibrium moisture content (EMC), the rec overy of wood compression set after adsorption (RSA) and the recovery after imme rsion in water (RSW), as well as the creep behaviour under a dry specimen condit ion and under an adsorption and subsequent desorption condition were measured an d discussed. This research proves that the doses of gamma irradiation have great effect on weight loss, EMC, RSA, RSW of irradiated compressed wood of Chinese f ir. The weight loss and the EMC increase, the RSA and the RSW fall drastically w hen the irradiation doses exceed 10 6 Gy. Both the instantaneous compliance and the creep compliance of the irradiated specimens under the two measurement cond itions show the general trend of increase with the increase of gamma irradiation doses. It can be deduced that decomposition or decrystallization reactions happ en in the wood cell wall at high gamma irradiation doses, especially at doses of around 5×10 6 Gy. In addition, this research proves that decomposition of mai n components of cell wall of compressed wood will lead to fixation of compressio n set of wood to a certain degree.
基金Supported by Science and Technology Programs of Liangqing District of Nanning City(201304A)Science and Technology Program of Guangxi University(XJZ120270)~~
文摘The aim of this study was investigate the effects of heat treatment on the contact angle of Chinese fir, and the indicators affecting the change of contact an-gle change. It was determined that the duration of treatment had significant effect on the change curves of contact angle of Chinese fir wood due to the change curves of contact angle became more centralized and orderly after the specimens heat treated at 180 ℃. Compared with the untreated wood, the contact angle in-creased from 51° to 124° after 4 h treatment, and hydroxyl absorbance of hy-drophilic functional groups decreased from 2.08 to 1.63, while carbonyl absorbance from 0.92 to 0.62. The surface roughness has not significant influence on the con-tact angle. Heat treatment of the Chinese fir caused surface morphological change, which produced hol owed-out phenomenon. The increased surface contact angle caused by heat treatment can be used for outdoor and sauna facilities.
基金This paper was supported by Natural Science Foundation of Fujian Province (B0010020)
文摘Allelochemicals of Chinese-fir root was extracted by technology of supercritical CO2 extraction under orthogonal experiment design, and it was used to analyze allelopathic activity of Chinese-fir through bioassay of seed germination. The results showed that as to the available rate of allelochemicals, the pressure and temperature of extraction were the most important factors. The allelochemicals of Chinese-fir root extracted by pure CO2 and ethanol mixed with CO2 have different allelopathic activities to seed germination, and the allelochemicals extracted by ethanol mixed with CO2 had stronger inhibitory effects on seed germination than that extracted by pure CO2.
基金supported by the National Scientific and Technological Task in China(Nos.2015BAD09B0101,2016YFD0600302)National Natural Science Foundation of China(No.31570619)the Special Science and Technology Innovation in Jiangxi Province(No.201702)
文摘Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN.
基金supported by the National Natural Sci-ence Foundation of China (No. 30470303)the Key Project of the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-405)
文摘The importance of soil organic carbon (SOC) under forests in the global carbon cycle depends on the stability of the soil carbon and its availability to soil microbial biomass. We investigated the effects of successive rotations of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantations on the stability of SOC and its availability to microbes by adopting the two-step hydrolysis with H2SO4 and density fractionation. The results showed that successive rotations of Chinese fir decreased the quantity of total SOC, recalcitrant fraction, and carbohydrates in Labile Pool I (LPI), and microbial properties evidently, especially at 0-10 cm horizon. However, cellulose included in Labile Pool Ⅱ (LP Ⅱ) and the cellulose/total carbohydrates ratio increased in successive rotations of Chinese fir. The noncellulose of carbohydrates included in LPI maybe highly available to soil microbial biomass. Hence the availability of SOC to microbial biomass declined over the successive rotations. Although there was no significant change in recalcitrance of SOC over the successive rotations of Chinese fir, the percentage of heavy fraction to total SOC increased, suggesting that the degree of physical protection for SOC increased and SOC became more stable over the successive rotations. The degradation of SOC quality in successive rotation soils may be attributed to worse environmental conditions resulted from disturbance that related to "slash and burn" site preparation. Being highly correlated with soil microbial properties, the cellulose/total carbohydrates ratio as an effective indicator of changes in availability of SOC to microbial biomass brought by management practices in forest soils.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFD0600304-2)the National Natural Science Foundation of China(Grant Nos.31830015 and 41630755)Hunan Province Science and Technology Program(2017TP1040)
文摘Phenolic acids are secondary metabolites of plants that significantly affect nutrient cycling processes.To investigate such effects,the soil available nitrogen(N)content,phenolic acid content,and net N mineralization rate in three successive rotations of Chinese fir plantations in subtropical China were investigated.Net N mineralization and nitrification rates in soils treated with phenolic acids were measured in an ex situ experiment.Compared with first-rotation plantations(FCP),the contents of total soil nitrogen and nitrate in second(SCP)-and third-rotation plantations(TCP)decreased,and that of soil ammonium increased.Soil net N mineralization rates in the second-and third-rotation plantations also increased by 17.8%and 39.9%,respectively.In contrast,soil net nitrification rates decreased by 18.0%and 25.0%,respectively.The concentrations of total phenolic acids in the FCP soils(123.22±6.02 nmol g^-1)were 3.0%and 17.9%higher than in the SCP(119.68±11.69 nmol g^-1)and TCP(104.51±8.57 nmol g^-1,respectively).The total content of phenolic acids was significantly correlated with the rates of net soil N mineralization and net nitrification.The ex situ experiment showed that the net N mineralization rates in soils treated with high(HCPA,0.07 mg N kg^-1 day^-1)and low(LCPA,0.18 mg N kg^-1 day^-1)concentrations of phenolic acids significantly decreased by 78.6%and 42.6%,respectively,comparing with that in control(0.32 mg N kg^-1 day^-1).Soil net nitrification rates under HCPA and LCPA were significantly higher than that of the control.The results suggested that low contents of phenolic acids in soil over successive rotations increased soil net N mineralization rates and decreased net nitrification rates,leading to consequent reductions in the nitrate content and enhancement of the ammonium content,then resulting in enhancing the conservation of soil N of successive rotations in Chinese fir plantation.
文摘An investigation and on 13 year old (1984~1996) Chinese fir and Tsoong's tree mixed forests in Jianou City, Fujian Province, China was carried out to compare the influences of different interplanting types of individual tree tree, row row, row strip (three rows) and pure Chinese fir stands on soil properties. Compared with the pure stands of Chinese fir, the mixed stands exerted a positive effect on soil fertility, with increases in soil organic matter, total N, available P and available K. Moreover, improvements were also observed in soil enzymatic activities, aggregate structure, structure stability, status of soil porosity, soil aeration and penetrability in mixed stands. The row row interplanted stands had the best effect on tree growth and soil properties among these mixed forests. In the southern subtropical region, the spreading of the row row mixing model of the two tree species would be helpful to preventing the soil from fertility deterioration caused by successive plantation of Chinese fir.
基金financed by the National Natural Science Foundation of China(No.31370615 and 31130013)National Key Basic Research Program of China(2014CB954003)
文摘Prescribed fire has now become the usual management practice in the Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation in southern China. Heat generated during fire may affect carbon (C) dynam- ics in soils. We investigated the microbial biomass C (MBC) and microbial respiration in two Chinese fir forest soils (one is not exposed to fire for the past 88 years, and the other is recently exposed to prescribed fire) after soil heating (100 and 200 ℃) under three moisture regimes [25, 50 and 75 % of water holding capacity (WHC)]. For both soils, significant reduction in MBC with increasing heating temperature was found. Soils without exposing to fire previously had significantly greater MBC concentra- tion than the fire-exposed soils when heated at 100 or 200 ℃. Lower soil water content resulted in higher MBC concentrations in both soils. In contrast, both soils had the highest soil microbial respiration rate at 50 % WHC. Soils without exposing to fire previously had the greatest microbial respiration rates at 200 ℃, while the fire-ex- posed soils when heated at 100 ℃ had greatest microbialrespiration rates. During 14-days post-heat incubation, soil MBC in both soils was greatest after heating at 200 ℃ and 25 % WHC. However, soil previously exposed to fire had the lowest CO2 evolution when incubated at 25 % WHC.
基金Project(No.30170770)supported by the National Natural Science Foundation of China.Corresponding author.Tel:0599-8504990Fax:0599-8516481E-mail:ffcyys@public.npptt.fj.cn.
文摘A Chinese fir forest (Cunninghamia lanceolata, CF) and an evergreen broadleaved forest (EB) located inFujian Province, southeastern China, were examined following slash burning to compare nutrient capital andtopsoil properties with pre-burn levels. After fire, nutrient (N, P and K) removal from burning residues wasestimated at 302.5 kg ha-1 in the CF and 644.8 kg ha-1 in the EB. Fire reduced the topsoil capitals of totalN and P by about 20% and 10%, respectively, in both forests, while K capital was increased in the topsoils ofboth forests following fire. Total site nutrient loss through surface erosion was 28.4 kg (N) ha-1, 8.4 kg (P)ha-1 and 328.7 kg (K) ha-1 in the CF. In the EB, the losses of total N, P and K were 58.5, 10.5 and 396.3kg ha-1, respectively. Improvement of soil structure and increase in mineralization of nutrients associatedwith increased microbe number and enzyme activities and elevated soil respiration occurred 5 days after fire.However, organic matter and available nutrient contents and most of other soil parameters declined one yearafter fire on the burned CF and EB topsoils. These results suggest that short-term site productivity canbe stimulated immediately, but reduced subsequently by soil and water losses, especially in South China,where high-intensity precipitation, steep slopes and fragile soil can be expected. Therefore, the silviculturalmeasurements should be developed in plantation management.
文摘The changes in soil fertility under continuous plantation of Chinese fir were studied by comparing soilsamples from different forest stands: the first and second plantations of Chinese fir, evergreen broad-leavedforests, and clear-cut and burnt Chinese fir land located at Xihou Village, Nanping of Fujian Province. Thesoils were humic red soil originated from weathered coarse granite of the Presinian system. Soil PH, CEC,base saturation, exchangeable Ca ̄(2+), exchangeable Mg ̄(2+) and Al-P declined after continuous plantation ofChinese fir. The same trends were also found in the soils under broad-leaved stands and slash burnt lands.The explantation was that not merely the biological nature of the Chinese fir itself but the natural leachingof nutrients, soil erosion and nutrient losses due to clear cutting and slash burning of the preceding plantationcaused the soil deterioration. Only some of main soil nutrients decreased after continuons plantation ofChinese fir, depending on specific silvicultural system, which was different from the conclusions in some otherreports which showed that all main nutrients, such as OM, total N, available P and available K decreased.Some neccessary steps to make up for the lost base, to apply P fertilizer and to avoid buring on clear cutlands could be taken to preventsoil degradation and yield decline in the system of continuous plantation ofChinese fir.
基金Project supported by the National Natural Science Foundation of China (No. 30170770).
文摘Soil organic carbon (C) and total nitrogen (N) pools of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) (CF) forest, and an evergreen broadleaf (EB) forest located in mid-subtropical, southeastern China, were compared before clearcutting, with the effect of slash burning on organic C and total N in the top 10 cm of soil before and after burning also being evaluated. Prior to clearcutting CF forest had significantly lower (P 〈0.05) organic C and total N in the soil (0-100 cm) compared to EB forest with approximately 60% of the C and N at the two forest sites stored at the 0 to 40 cm soil. In post-burn samples of the 0-10 cm depth at 5 days, 1 year, and 5 years for CF and EB forests, significantly lower levels (P 〈0.05) of organic C and total N than those in the pre-burn samples were observed. Compared to the pre-burn levels, at post-burn year 5, surface soil organic C storage was only 85% in CF forest and 72% in EB forest, while total N storage was 77% for CF forest and 73% for EB forest. Slash burning caused marked long-term changes in surface soil C and N in the two forest types.
基金funded by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.15KJA220002)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Fujian Province Science and Technology Research funding on the fourth Tree Breeding Cycle Program of Chinese fir(Grant No.Min Lin 2016-1)
文摘We used spatial, global trend and post-blocking analysis to examine the effectiveness of a progeny trial in a tree breeding program for Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) on a hilly site with an environmental gradient from hill top to bottom. Diameter at breast height (DBH) and tree height data had significant spatial auto-correlations among rows and columns. Adding a firstorder separable autoregressive term more effectively modelled the spatial variation than did the incomplete block (IB) model used for the experimental design. The spatial model also accounted for effects of experimental design factors and greatly reduced residual variances. The spatial analysis rel- ative to the IB analysis improved estimation of genetic parameters with the residual variance reduced 13 and 19% for DBH and tree height, respectively; heritability increased 35 and 51% for DBH and tree height, respectively; and genetic gain improved 3-5%. Fitting global trend and postblocking did not improve the analyses under IB model. The use of a spatial model or combined with a design model is recommended for forest genetic trials, particularly with global trend and local spatial variation of hilly sites.
基金Foundation project: This study was supported by China Postdoctoral Science Foundation (20070410226) and the Special Foundation for Youn Scientists of Fu'ian Province (2006F3038)Acknowledgement This research was sponsored by China Postdoctoral Science Foundation (20070410226) and the Special Foundation for Young Scientists of Fujian Province (2006F3038). The authors are grateful to Dr. Chen Guang-shui and Xie Jin-sheng for their valuable advice and to Qian Wei and Sun Jie for their help in the laboratory analyses.
文摘Soil samples collected from the surface soil (0-10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping Fujian, China were incubated for 90 days at the temperatures of 15℃, 25℃ and 35℃ in laboratory. The soil CO2 evolution rates were measured at the incubation time of 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80 and 90 days. The results showed that CO2 evolution rates of soil samples varied significantly with incubation time and temperature during the incubation period. Mean CO2 evolution rate and cumulative amount of CO2 evolution from soil were highest at 35℃, followed by those at 25℃, and 15℃. Substantial differences in CO2 evolution rate were found in Q10 values calculated for the 2nd and 90th day of incubation. The Q10 value for the average CO2 evolution rate was 2.0 at the temperature range of 15-25℃, but it decreased to 1.2 at 25 35℃. Soil CO2 evolution rates decreased with the incubation time. The cumulative mineralized C at the end of incubation period (on the 90th day) was less than 10% of the initial C amounts prior to incubation.