The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing...The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.展开更多
Laser Raman spectroscopy and cathodoluminescence (CL) images show that most zircon crystals separated from paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) at Maob...Laser Raman spectroscopy and cathodoluminescence (CL) images show that most zircon crystals separated from paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) at Maobei, southwestern Sulu terrane, contain low-pressure mineral-bearing detrital cores, coesite-bearing mantles and quartz-bearing or mineral inclusion-free rims. SHRIMP U-Pb dating on these zoned zircons yield three discrete and meaningful age groups. The detrital cores yield a large age span from 659 to 313 Ma, indicating the protolith age for the analyzed paragnelss is Paleozoic rather than Proterozoic. The coesite-bearing mantles yield a weighted mean age of 228 ± 5 Ma for the UHP event. The quartz-bearing outmost rims yield a weighted mean age of 213 ± 6 Ma for the retrogressive event related to the regional amphibolite facies metamorphism in the Sulu UHP terrane. Combined with previous SHRIMP U-Pb dating results from orthogneiss in CCSD-MH, it is suggested that both Neoproterozoic granitic protolith and Paleozoic sedimentary rocks were subducted to mantle depths in the Late Triassic. About 15 million years later, the Sulu UHP metamorphic rocks were exhumed to mid-crustal levels and overprinted by an amphibolite-facies retrogressive metamorphism. The exhumation rate deduced from the SHRIMP data and metamorphic P-T conditions is about 6.7 km/Ma. Such a fast exhumation suggests that the Sulu UHP paragnelss and orthogneiss returned towards the surface as a dominant part of a buoyant sliver, caused as a consequence of slab breakoff.展开更多
The Chinese Meridian Project is a ground-based space environment monitoring facility in China.The first phase of the project has been put into formal operation since 2012 after 4-year’s construction.It consists of 15...The Chinese Meridian Project is a ground-based space environment monitoring facility in China.The first phase of the project has been put into formal operation since 2012 after 4-year’s construction.It consists of 15 observatories located roughly along 120°E longitude and 30°N latitude,with each observatory equipped with multiple instruments to monitor space environment.Based on the huge observational data accumulated,significant scientific achievements have been made with more than 300 peer-reviewed journal papers published.In this report,scientific results from the past two years have been reviewed with topics covering fields of geomagnetic,atmosphere,ionosphere,and their responses to solar activities.The excellent achievements from the Phase I of Chinese Meridian Project lay a good foundation for Phase II,which has already been approved with the official kick-off of construction in November 2019.It will conceive an unprecedented contribution to global space weather community from China.展开更多
The Chinese Meridian Project(CMP)is the Space Environment Ground Based Comprehensive Monitoring Network of China,a national major science and technology infrastructure project.The CMP consists of the Space Environment...The Chinese Meridian Project(CMP)is the Space Environment Ground Based Comprehensive Monitoring Network of China,a national major science and technology infrastructure project.The CMP consists of the Space Environment Monitoring System,Data Communication System,and Science Application System.Its construction has been divided into two steps:the PhaseⅠwas from 2008 to 2012;the PhaseⅡstarted at the end of 2019,expected to be completed at the end of 2023.Beyond 2023,the CMP as a whole will be in operation to make observations.This report introduces the construction progress of CMP PhaseⅡin the past two years,covering the construction progress of both the Data Communication System and the Science Application System.As for the Space Environment Monitoring System,this report mainly gives an introduction to the construction progress of large-scale advanced monitoring equipment,such as,the solar radio telescope,interplanetary scintillation telescope,incoherent scatter radar,high frequency radar,MST radar,and large-aperture Helium Lidar.In addition,this paper presents the construction plan for the next two years and the future outlook as well.展开更多
The Chinese Meridian Project(CMP)is a major national science and technology infrastructure invested and constructed by the Chinese government.The project builds space environment observation stations,focusing on the m...The Chinese Meridian Project(CMP)is a major national science and technology infrastructure invested and constructed by the Chinese government.The project builds space environment observation stations,focusing on the monitoring of the space environment over China,so as to provide a monitoring basis for clarifying the regional characteristics of the space environment over China and its relationship with global change,and making important innovative scientific achievements.The first phase of the CMP passed the national acceptance in 2012.It has been running for nearly ten years and has accumulated more than 8 TB monitoring data.These data are all available to all data users through the data center of the project.From 2020 to 2021,users of CMP data have completed a series of original works,which have solved current scientific problems in the field of space physics research.On the other hand,they also make us look forward to the completion of the second phase of CMP and its application benefits in national major strategic needs and cutting-edge scientific research.展开更多
Currently,the investment of oil and gas industry is still facing an unfavorable environment,in which,instable factors,such as financial crisis,terrorist,religious conflicts and rigorous environmental regulations,keep ...Currently,the investment of oil and gas industry is still facing an unfavorable environment,in which,instable factors,such as financial crisis,terrorist,religious conflicts and rigorous environmental regulations,keep mucking up the business all around the world.Meanwhile,China’s rapid energy consumption growth boosted by a booming economy has put the country to rely heavily on exported oil.It is therefore extremely urgent to expand and diversify petroleum supply channel in consideration of the country’s energy security.As the world’s economy has been slowly recovering from the slump and展开更多
1. CERP The Cooperative Ecological Research Programme (CERP) is a joint plan to study the Man and Biosphere (MAB) ecosystem in our country, founded by Germany through UNESCO. The second-stage projects of CERP had been...1. CERP The Cooperative Ecological Research Programme (CERP) is a joint plan to study the Man and Biosphere (MAB) ecosystem in our country, founded by Germany through UNESCO. The second-stage projects of CERP had been undertaken in 1991, including: (1) Study on the Ecological Strategy for the Urban Development of Tianjin City Exemplifying the large industrial city, it is to study the succession mechanism, cybernetic characteristics, and systems analytic methods of identification, simulation and planning, of the Social-Economic-Natural Com-展开更多
The Yangtze River has nurtured the fertile land on both its banks and hundreds of millions of Chinese people. but its raging waters have also wreaked havoc on the people living in its reaches. Since the founding of Ne...The Yangtze River has nurtured the fertile land on both its banks and hundreds of millions of Chinese people. but its raging waters have also wreaked havoc on the people living in its reaches. Since the founding of New China, large-scale surveys, planning, scientific research and feasibility studies have been carried out in an effort to harness the展开更多
The first stage of HGP in China (Jan. 1994~Jun. 1997) was sponsored by the National Natural Science Foundation of China in the form of a principle project (total funding: 3,750,000 RMB) entitled "Study on gene s...The first stage of HGP in China (Jan. 1994~Jun. 1997) was sponsored by the National Natural Science Foundation of China in the form of a principle project (total funding: 3,750,000 RMB) entitled "Study on gene structure of some loci in the genome of Chinese nationalities". After 3 and half years’ collaborative work by 19 groups and about 200 scientists distributed in 16 participating labs, coordinated by Prof. Bo-Qing QIANG of the Institute of Basic Medical Sciences, Chinese展开更多
Recently, the Chinese Technology has issued more within the national key Ministry of Science and than 40 key special projects research and development program. In the 2017 Annual Project Application Guidelines, a tota...Recently, the Chinese Technology has issued more within the national key Ministry of Science and than 40 key special projects research and development program. In the 2017 Annual Project Application Guidelines, a total of seven key projects related to geological sciences are planned, with overall funding of 3.52 billion yuan, with the timespan generally of five years. They are introduced as follows:展开更多
In 2024,the Chinese Meridian Project(CMP)completed its construction,deploying 282 instruments across 31 stations.This achievement not only provides a robust foundation but also serves as a reference template for the I...In 2024,the Chinese Meridian Project(CMP)completed its construction,deploying 282 instruments across 31 stations.This achievement not only provides a robust foundation but also serves as a reference template for the International Meridian Circle Program(IMCP).The IMCP aims to integrate and establish a comprehensive network of ground-based monitoring stations designed to track the propagation of space weather events from the Sun to Earth.Additionally,it monitors various disturbances generated within the Earth system that impact geospace.Over the past two years,significant progress has been made on the IMCP.In particular,the second phase of construction for the China-Brazil Joint Laboratory for Space Weather has been completed,and the North Pole and Southeast Asia networks are under active construction.The 2024 IMCP joint observation campaign was successfully conducted.To facilitate these developments,the scientific program committee of IMCP was established,following the success of 2023 IMCP workshop and the space weather school,which was co-hosted with the Asia-Pacific Space Cooperation Organization(APSCO)and sponsored by Chinese Academy of Sciences(CAS)and Scientific Committee on Solar-Terrestrial Physics(SCOSTEP).Preparations are now underway for the 2024 workshop in collaboration with the National Institute for Space Research(INPE)in Brazil.展开更多
The Chinese Meridian Project(CMP)is devoted to establishing a comprehensive ground-based monitoring network for China’s space weather research.CMP is a major national science and technology infrastructure project wit...The Chinese Meridian Project(CMP)is devoted to establishing a comprehensive ground-based monitoring network for China’s space weather research.CMP is a major national science and technology infrastructure project with the participation of more than 10 research institutions and universities led by the National Space Science Center of the Chinese Academy of Sciences.CMP is planned to be constructed in two phases:CMP phasesⅠandⅡ.The first phase(CMP-Ⅰ)started construction in2008 and completed in 2012,after which it entered the operation stage.The 10-year observation of CMP-Ⅰhas made significant scientific discoveries and achievements in the research fields of the middle and upper atmospheric fluctuations,metal layers in the mesosphere and lower thermosphere,ionospheric disturbances and irregularities,geomagnetic disturbances,and influences of solar activity.The review summarizes the main observations and research achievements,space weather forecast modeling and methods based on CMP-Ⅰover the past 10 years,and presents a future extension perspective along with the construction of CMP-Ⅱ.展开更多
The Earth is buffered from the ferocious onslaught of the solar wind by a thin layer of matter known as the atmosphere and geospace.This layer absorbs energy from irradiance and outburst from the Sun,as well as from d...The Earth is buffered from the ferocious onslaught of the solar wind by a thin layer of matter known as the atmosphere and geospace.This layer absorbs energy from irradiance and outburst from the Sun,as well as from disasters,transient phenomena and anthropogenic emissions originated from Earth.Through complicated physics,the absorbed energy changes the atmospheric and geospace state and sometimes gets re-released to power extreme events such as space weather.Taking place globally,these complicated processes cannot be understood unless they are studied globally.The Chinese scientists have proposed the International Meridian Circle Program(IMCP)to meet this demand.By operating nearly 1000 instruments encompassing all latitudes along with the 120°E–60°W longitudes,IMCP aims,for the first time,to construct comprehensive 3D data representation of the atmosphere and geospace on a global scale and empower interdisciplinary research to tackle key questions related to Earth’s environment and climate change.展开更多
Based on the Chinese Meridian Project(CMP),the International Meridian Circle Program(IMCP)aims to coordinate the deployment of a comprehensive ground-based monitoring network along the 120°E-60°W Great Merid...Based on the Chinese Meridian Project(CMP),the International Meridian Circle Program(IMCP)aims to coordinate the deployment of a comprehensive ground-based monitoring network along the 120°E-60°W Great Meridian Circle to track the propagation and evolution of space weather events from the Sun to the Earth,as well as the imprints of other major natural and anthropic hazards on the ionosphere,the middle and upper atmosphere.Currently,we have completed the IMCP headquarters building in Beijing and established the China-Brazil Joint Laboratory for Space Weather in cooperation with Brazil.Meanwhile,the Chinese Meridian Project PhaseⅡand different components of the IMCP observation system are under construction.展开更多
Surface observations and CHAMP measurement data are employed to develop a three-dimensional surface spline(3DSS)model of China's Mainland.The magnetic field distribution at the satellite level is then demonstrated...Surface observations and CHAMP measurement data are employed to develop a three-dimensional surface spline(3DSS)model of China's Mainland.The magnetic field distribution at the satellite level is then demonstrated using the model obtained.The results of this model are compared and verifi ed by deriving the corresponding two(2DTY)and threedimensional(3DTY)Taylor polynomial models.Issues such as the removal of disruptive geomagnetic fi elds,the data gap between the surface and satellite levels,and boundary eff ects are carefully considered during modeling.We then focus on evaluating the modeling eff ect of the satellite data.Ten satellite points not involved in the modeling procedure are selected,and the residuals,absolute change rates,and RMSEs of these points are calculated.Results show that the distribution of the magnetic fi eld determined by the 3DSS model is highly consistent with that obtained from the IGRF12 model.Expect for component Y,the absolute change rates of other components are less than 0.5%.Specifi cally,the RMSE of Y of 3DSS is nearly 60%lower than those of 3DTY and 2DTY;the RMSE of other components of the former are also over 90%lower than those of the latter.This fi nding implies that the 3DSS model has good performance for modeling satellite data and its results are reliable.Moreover,the modeling eff ect of 3DTY is better than that of 2DTY.展开更多
Asocial public welfare undertaking—"an intelligence project" of great practical significance and profound historical significance was formally unfolded to the public by the end of 1993. This is the glad tid...Asocial public welfare undertaking—"an intelligence project" of great practical significance and profound historical significance was formally unfolded to the public by the end of 1993. This is the glad tidings of 25 million people who live in the region of Iodine Deficiency Disease (IDD) as well as a great matter of concern for the 1.2 billion people of China.展开更多
Earth’s ecosystems and human activities are threatened by a broad spectrum of hazards of major importance for the safety of ground infrastructures,space systems and space flight:solar activity,earthquakes,atmospheric...Earth’s ecosystems and human activities are threatened by a broad spectrum of hazards of major importance for the safety of ground infrastructures,space systems and space flight:solar activity,earthquakes,atmospheric and climatic disturbances,changes in the geomagnetic field,fluctuations of the global electric circuit.Monitoring and understanding these major hazards to better predict and mitigate their effects is one of the greatest scientific and operational challenges of the 21st century.Though diverse,these hazards share one feature in common:they all leave their characteristic imprints on a critical layer of the Earth’s environment:its ionosphere,middle and upper atmosphere(IMUA).The objective of the International Meridian Circle Program(IMCP),a major international program led by the Chines Academy of Sciences(CAS),is to deploy,integrate and operate a global network of research and monitoring instruments to use the IMUA as a screen on which to detect these imprints.In this article,we first show that the geometry required for the IMCP global observation system leads to a deployment of instruments in priority along the 120°E-60°W great meridian circle,which will cover in an optimal way both the dominant geographic and geomagnetic latitude variations,possibly complemented by a second Great Circle along the 30°E-150°W meridians to capture longitude variations.Then,starting from the Chinese Meridian Project(CMP)network and using it as a template,we give a preliminary and promising description of the instruments to be integrated and deployed along the 120°E-60°W great circle running across China,Australia and the Americas.展开更多
The relationship between the automatic control method and the stability of the open canal is studied by means of numerical simulation of unsteady flow in an open canal under different methods of control. It is found t...The relationship between the automatic control method and the stability of the open canal is studied by means of numerical simulation of unsteady flow in an open canal under different methods of control. It is found the Proportional-Proportional plus Reset (P+PR) control is more reliable than the Linear Quadratic Regulator (LQR) control. Moreover, for the P+PR control, the hydraulic response of the constant volume method of operation is better than that of the constant downstream depth method in the type of centrally controlled canal. Therefore, an appropriate flow change rate should be chosen instead of shortening the pool length to reach an acceptable drawdown rate. For the canal with a bottom width of 40 m, side slope of 3, Manning n of 0.015, bottom slope of 0.000 04, and design flow of 600 m3/s, the pool length of more than 30 km can provide acceptable drawdown rates of 0.2 m/h when a proper flow change rate is chosen.展开更多
基金Supported by National Major Science and Technology Infrastructure Construction Project:the Chinese Meridian Project(2017-000052-73-01-002390)。
文摘The Chinese Meridian Project(CMP)is a major national science and technology infrastructure constructed in two steps.The first phase of the CMP has been operating for more than a solar cycle.From 2022 to 2023,utilizing the monitoring data collected by the CMP,scientists made major breakthroughs in fields of ionosphere,middle and upper atmosphere,and coupling between layers.The construction of the second phase of the CMP is nearly finished,and the project is expected to operate as a whole in 2025 after national acceptance of the second phase.The whole project was built in an architecture of so-called“One Chain,Three Networks and Four Focuses”.It is promising to make a three-dimensional observation of the whole solar-terrestrial space.The science community is looking forward to the great contribution of the CMP to space weather and space physics research.
基金funded by the National Natural Science Foundation of China(grant No.40399143)the National 973 Project of the Chinese Ministry of Science and Technology(grant No.2003CB716502)the Programme of Excellent Youth Scientists of the Ministry of Land and Resources of China.
文摘Laser Raman spectroscopy and cathodoluminescence (CL) images show that most zircon crystals separated from paragneiss in the main drill hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) at Maobei, southwestern Sulu terrane, contain low-pressure mineral-bearing detrital cores, coesite-bearing mantles and quartz-bearing or mineral inclusion-free rims. SHRIMP U-Pb dating on these zoned zircons yield three discrete and meaningful age groups. The detrital cores yield a large age span from 659 to 313 Ma, indicating the protolith age for the analyzed paragnelss is Paleozoic rather than Proterozoic. The coesite-bearing mantles yield a weighted mean age of 228 ± 5 Ma for the UHP event. The quartz-bearing outmost rims yield a weighted mean age of 213 ± 6 Ma for the retrogressive event related to the regional amphibolite facies metamorphism in the Sulu UHP terrane. Combined with previous SHRIMP U-Pb dating results from orthogneiss in CCSD-MH, it is suggested that both Neoproterozoic granitic protolith and Paleozoic sedimentary rocks were subducted to mantle depths in the Late Triassic. About 15 million years later, the Sulu UHP metamorphic rocks were exhumed to mid-crustal levels and overprinted by an amphibolite-facies retrogressive metamorphism. The exhumation rate deduced from the SHRIMP data and metamorphic P-T conditions is about 6.7 km/Ma. Such a fast exhumation suggests that the Sulu UHP paragnelss and orthogneiss returned towards the surface as a dominant part of a buoyant sliver, caused as a consequence of slab breakoff.
基金Supported by the Open Research Project of Large Research Infrastructures of Chinese Academy of Sciences,the Study on the Interaction between Low/Mid-latitude Atmosphere and Ionosphere Based on the Chinese Meridian Project,and the Chinese Meridian Project。
文摘The Chinese Meridian Project is a ground-based space environment monitoring facility in China.The first phase of the project has been put into formal operation since 2012 after 4-year’s construction.It consists of 15 observatories located roughly along 120°E longitude and 30°N latitude,with each observatory equipped with multiple instruments to monitor space environment.Based on the huge observational data accumulated,significant scientific achievements have been made with more than 300 peer-reviewed journal papers published.In this report,scientific results from the past two years have been reviewed with topics covering fields of geomagnetic,atmosphere,ionosphere,and their responses to solar activities.The excellent achievements from the Phase I of Chinese Meridian Project lay a good foundation for Phase II,which has already been approved with the official kick-off of construction in November 2019.It will conceive an unprecedented contribution to global space weather community from China.
文摘The Chinese Meridian Project(CMP)is the Space Environment Ground Based Comprehensive Monitoring Network of China,a national major science and technology infrastructure project.The CMP consists of the Space Environment Monitoring System,Data Communication System,and Science Application System.Its construction has been divided into two steps:the PhaseⅠwas from 2008 to 2012;the PhaseⅡstarted at the end of 2019,expected to be completed at the end of 2023.Beyond 2023,the CMP as a whole will be in operation to make observations.This report introduces the construction progress of CMP PhaseⅡin the past two years,covering the construction progress of both the Data Communication System and the Science Application System.As for the Space Environment Monitoring System,this report mainly gives an introduction to the construction progress of large-scale advanced monitoring equipment,such as,the solar radio telescope,interplanetary scintillation telescope,incoherent scatter radar,high frequency radar,MST radar,and large-aperture Helium Lidar.In addition,this paper presents the construction plan for the next two years and the future outlook as well.
文摘The Chinese Meridian Project(CMP)is a major national science and technology infrastructure invested and constructed by the Chinese government.The project builds space environment observation stations,focusing on the monitoring of the space environment over China,so as to provide a monitoring basis for clarifying the regional characteristics of the space environment over China and its relationship with global change,and making important innovative scientific achievements.The first phase of the CMP passed the national acceptance in 2012.It has been running for nearly ten years and has accumulated more than 8 TB monitoring data.These data are all available to all data users through the data center of the project.From 2020 to 2021,users of CMP data have completed a series of original works,which have solved current scientific problems in the field of space physics research.On the other hand,they also make us look forward to the completion of the second phase of CMP and its application benefits in national major strategic needs and cutting-edge scientific research.
文摘Currently,the investment of oil and gas industry is still facing an unfavorable environment,in which,instable factors,such as financial crisis,terrorist,religious conflicts and rigorous environmental regulations,keep mucking up the business all around the world.Meanwhile,China’s rapid energy consumption growth boosted by a booming economy has put the country to rely heavily on exported oil.It is therefore extremely urgent to expand and diversify petroleum supply channel in consideration of the country’s energy security.As the world’s economy has been slowly recovering from the slump and
文摘1. CERP The Cooperative Ecological Research Programme (CERP) is a joint plan to study the Man and Biosphere (MAB) ecosystem in our country, founded by Germany through UNESCO. The second-stage projects of CERP had been undertaken in 1991, including: (1) Study on the Ecological Strategy for the Urban Development of Tianjin City Exemplifying the large industrial city, it is to study the succession mechanism, cybernetic characteristics, and systems analytic methods of identification, simulation and planning, of the Social-Economic-Natural Com-
文摘The Yangtze River has nurtured the fertile land on both its banks and hundreds of millions of Chinese people. but its raging waters have also wreaked havoc on the people living in its reaches. Since the founding of New China, large-scale surveys, planning, scientific research and feasibility studies have been carried out in an effort to harness the
文摘The first stage of HGP in China (Jan. 1994~Jun. 1997) was sponsored by the National Natural Science Foundation of China in the form of a principle project (total funding: 3,750,000 RMB) entitled "Study on gene structure of some loci in the genome of Chinese nationalities". After 3 and half years’ collaborative work by 19 groups and about 200 scientists distributed in 16 participating labs, coordinated by Prof. Bo-Qing QIANG of the Institute of Basic Medical Sciences, Chinese
文摘Recently, the Chinese Technology has issued more within the national key Ministry of Science and than 40 key special projects research and development program. In the 2017 Annual Project Application Guidelines, a total of seven key projects related to geological sciences are planned, with overall funding of 3.52 billion yuan, with the timespan generally of five years. They are introduced as follows:
基金Supported by International Meridian Circle Program Headquarters,China-Brazil Joint Laboratory for Space Weather(Y42347A99S)。
文摘In 2024,the Chinese Meridian Project(CMP)completed its construction,deploying 282 instruments across 31 stations.This achievement not only provides a robust foundation but also serves as a reference template for the International Meridian Circle Program(IMCP).The IMCP aims to integrate and establish a comprehensive network of ground-based monitoring stations designed to track the propagation of space weather events from the Sun to Earth.Additionally,it monitors various disturbances generated within the Earth system that impact geospace.Over the past two years,significant progress has been made on the IMCP.In particular,the second phase of construction for the China-Brazil Joint Laboratory for Space Weather has been completed,and the North Pole and Southeast Asia networks are under active construction.The 2024 IMCP joint observation campaign was successfully conducted.To facilitate these developments,the scientific program committee of IMCP was established,following the success of 2023 IMCP workshop and the space weather school,which was co-hosted with the Asia-Pacific Space Cooperation Organization(APSCO)and sponsored by Chinese Academy of Sciences(CAS)and Scientific Committee on Solar-Terrestrial Physics(SCOSTEP).Preparations are now underway for the 2024 workshop in collaboration with the National Institute for Space Research(INPE)in Brazil.
文摘The Chinese Meridian Project(CMP)is devoted to establishing a comprehensive ground-based monitoring network for China’s space weather research.CMP is a major national science and technology infrastructure project with the participation of more than 10 research institutions and universities led by the National Space Science Center of the Chinese Academy of Sciences.CMP is planned to be constructed in two phases:CMP phasesⅠandⅡ.The first phase(CMP-Ⅰ)started construction in2008 and completed in 2012,after which it entered the operation stage.The 10-year observation of CMP-Ⅰhas made significant scientific discoveries and achievements in the research fields of the middle and upper atmospheric fluctuations,metal layers in the mesosphere and lower thermosphere,ionospheric disturbances and irregularities,geomagnetic disturbances,and influences of solar activity.The review summarizes the main observations and research achievements,space weather forecast modeling and methods based on CMP-Ⅰover the past 10 years,and presents a future extension perspective along with the construction of CMP-Ⅱ.
基金Supported by Beijing Municipal Science and Technology Commission(Z181100002918001)。
文摘The Earth is buffered from the ferocious onslaught of the solar wind by a thin layer of matter known as the atmosphere and geospace.This layer absorbs energy from irradiance and outburst from the Sun,as well as from disasters,transient phenomena and anthropogenic emissions originated from Earth.Through complicated physics,the absorbed energy changes the atmospheric and geospace state and sometimes gets re-released to power extreme events such as space weather.Taking place globally,these complicated processes cannot be understood unless they are studied globally.The Chinese scientists have proposed the International Meridian Circle Program(IMCP)to meet this demand.By operating nearly 1000 instruments encompassing all latitudes along with the 120°E–60°W longitudes,IMCP aims,for the first time,to construct comprehensive 3D data representation of the atmosphere and geospace on a global scale and empower interdisciplinary research to tackle key questions related to Earth’s environment and climate change.
基金Supported by the International Partnership Program of Chinese Academy of Sciences(183311KYSB20200003)。
文摘Based on the Chinese Meridian Project(CMP),the International Meridian Circle Program(IMCP)aims to coordinate the deployment of a comprehensive ground-based monitoring network along the 120°E-60°W Great Meridian Circle to track the propagation and evolution of space weather events from the Sun to the Earth,as well as the imprints of other major natural and anthropic hazards on the ionosphere,the middle and upper atmosphere.Currently,we have completed the IMCP headquarters building in Beijing and established the China-Brazil Joint Laboratory for Space Weather in cooperation with Brazil.Meanwhile,the Chinese Meridian Project PhaseⅡand different components of the IMCP observation system are under construction.
基金This work was supported by the National Natural Science Foundation of China(Nos.41974073,41404053)Special Project for Meteo-Scientifi c Research in the Public Interest(No.GYHY201306073)。
文摘Surface observations and CHAMP measurement data are employed to develop a three-dimensional surface spline(3DSS)model of China's Mainland.The magnetic field distribution at the satellite level is then demonstrated using the model obtained.The results of this model are compared and verifi ed by deriving the corresponding two(2DTY)and threedimensional(3DTY)Taylor polynomial models.Issues such as the removal of disruptive geomagnetic fi elds,the data gap between the surface and satellite levels,and boundary eff ects are carefully considered during modeling.We then focus on evaluating the modeling eff ect of the satellite data.Ten satellite points not involved in the modeling procedure are selected,and the residuals,absolute change rates,and RMSEs of these points are calculated.Results show that the distribution of the magnetic fi eld determined by the 3DSS model is highly consistent with that obtained from the IGRF12 model.Expect for component Y,the absolute change rates of other components are less than 0.5%.Specifi cally,the RMSE of Y of 3DSS is nearly 60%lower than those of 3DTY and 2DTY;the RMSE of other components of the former are also over 90%lower than those of the latter.This fi nding implies that the 3DSS model has good performance for modeling satellite data and its results are reliable.Moreover,the modeling eff ect of 3DTY is better than that of 2DTY.
文摘Asocial public welfare undertaking—"an intelligence project" of great practical significance and profound historical significance was formally unfolded to the public by the end of 1993. This is the glad tidings of 25 million people who live in the region of Iodine Deficiency Disease (IDD) as well as a great matter of concern for the 1.2 billion people of China.
基金This work was supported by the International PartnershipProgram of Chinese Academy of Sciences(Grant No.183311KYSB20200003)the Beijing Municipal Science and Technology Commission(Grant No.Z181100002918001).
文摘Earth’s ecosystems and human activities are threatened by a broad spectrum of hazards of major importance for the safety of ground infrastructures,space systems and space flight:solar activity,earthquakes,atmospheric and climatic disturbances,changes in the geomagnetic field,fluctuations of the global electric circuit.Monitoring and understanding these major hazards to better predict and mitigate their effects is one of the greatest scientific and operational challenges of the 21st century.Though diverse,these hazards share one feature in common:they all leave their characteristic imprints on a critical layer of the Earth’s environment:its ionosphere,middle and upper atmosphere(IMUA).The objective of the International Meridian Circle Program(IMCP),a major international program led by the Chines Academy of Sciences(CAS),is to deploy,integrate and operate a global network of research and monitoring instruments to use the IMUA as a screen on which to detect these imprints.In this article,we first show that the geometry required for the IMCP global observation system leads to a deployment of instruments in priority along the 120°E-60°W great meridian circle,which will cover in an optimal way both the dominant geographic and geomagnetic latitude variations,possibly complemented by a second Great Circle along the 30°E-150°W meridians to capture longitude variations.Then,starting from the Chinese Meridian Project(CMP)network and using it as a template,we give a preliminary and promising description of the instruments to be integrated and deployed along the 120°E-60°W great circle running across China,Australia and the Americas.
基金Supported by the National Natural Science Foundation of China (51039007, 50979076)the National Basic Research Program of China (973 Program) (2010CB428802)the Open Research Fund of Key Laboratory for Water Requirement and Regulation, Ministry of Agriculture (CWRR200901)
文摘The relationship between the automatic control method and the stability of the open canal is studied by means of numerical simulation of unsteady flow in an open canal under different methods of control. It is found the Proportional-Proportional plus Reset (P+PR) control is more reliable than the Linear Quadratic Regulator (LQR) control. Moreover, for the P+PR control, the hydraulic response of the constant volume method of operation is better than that of the constant downstream depth method in the type of centrally controlled canal. Therefore, an appropriate flow change rate should be chosen instead of shortening the pool length to reach an acceptable drawdown rate. For the canal with a bottom width of 40 m, side slope of 3, Manning n of 0.015, bottom slope of 0.000 04, and design flow of 600 m3/s, the pool length of more than 30 km can provide acceptable drawdown rates of 0.2 m/h when a proper flow change rate is chosen.