In this paper,we investigate the expectation of the size of the largest table in an(α,θ)-Chinese restaurant process by using and developing an idea originated in the work by Shepp,which discusses random permutation.
This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be infe...This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonpara-metric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as well as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more fine-grained topic rela-tionships compared to the hierarchical latent Dirichlet allocation model.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10671036)the National Basic Research Program of China (Grant No.2007CB814904)
文摘In this paper,we investigate the expectation of the size of the largest table in an(α,θ)-Chinese restaurant process by using and developing an idea originated in the work by Shepp,which discusses random permutation.
基金Project (No. 60773180) supported by the National Natural Science Foundation of China
文摘This paper deals with the statistical modeling of latent topic hierarchies in text corpora. The height of the topic tree is assumed as fixed, while the number of topics on each level as unknown a priori and to be inferred from data. Taking a nonpara-metric Bayesian approach to this problem, we propose a new probabilistic generative model based on the nested hierarchical Dirichlet process (nHDP) and present a Markov chain Monte Carlo sampling algorithm for the inference of the topic tree structure as well as the word distribution of each topic and topic distribution of each document. Our theoretical analysis and experiment results show that this model can produce a more compact hierarchical topic structure and captures more fine-grained topic rela-tionships compared to the hierarchical latent Dirichlet allocation model.