The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured ...The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured via gas chromatography-mass spectrometry for determining the characteristics and sources of these organic pollutants. The concentrations of total n-alkanes, PAHs, and organic acids before Chinese Spring Festival Eve (1025.5, 95.9, and 543.3 ng/m3, respectively) were higher than those after (536.6, 58.9, and 331.8 ng/m3, respectively), n-Aalkanes and PAHs had much higher concentration in nighttime than those in daytime because of high relative humidity and low wind speed during the night. Combustion of coal and exhaust emission were major sources of n- alkanes. It could be concluded by the characteristic ratios that the primary source of PAHs in fine particles was the combustion of coal, but the combustion of gasoline was in the next place. The ratios of C18:0/C16 indicated the contribution of vehicular emissions to the fatty acids. Dicarboxylic and aromatic acids were abundant in daytime than in nighttime because these acids were secondary organic acid and the photochemical degradation of aromatic hydrocarbons was the main source.展开更多
A chromosome-level genome assembly of the bread wheat variety Chinese Spring(CS)has recently been published.Genome-wide identification of regulatory elements(REs)responsible for regulating gene activity is key to furt...A chromosome-level genome assembly of the bread wheat variety Chinese Spring(CS)has recently been published.Genome-wide identification of regulatory elements(REs)responsible for regulating gene activity is key to further mechanistic studies.Because epigenetic activity can reflect RE activity,defining chromatin states based on epigenomic features is an effective way to detect REs.Here,we present the web-based platform Chinese Spring chromatin state(CSCS),which provides CS chromatin signature information.CSCS indudes 15 recently published epigenomic data sets including open chromatin and major chromatin marks,which are further partitioned into 15 distinct chromatin states.CSCS curates detailed information about these chromatin states,with trained self-organization mapping(SOM)for segments in all chromatin states and JBrowse visualization for genomic regions or genes.Motif analysis for genomic regions or genes,GO analysis for genes and SOM analysis for new epige-nomic data sets are also integrated into CSCS.In summary,the CSCS database contains the combina-torial patterns of chromatin signatures in wheat and facilitates the detection of functi onal elements and further clarification of regulatory activities.We illustrate how CSCS enables biological insights using one example,demonstrating that CSCS is a highly useful resource for intensive data mining.CSCS is available at http://bioinfo.cemps.ac.cn/CSCS/.展开更多
Tang-suits, traditional Chinese clothing, always inadvertently reveal a sort of classical flavor that let us enjoy tasting the strong oriental charm to our hearts’ content thanks to
Shiyuchunbao is a new hybrid of early-mid maturity spring Chinese cabbage with growth period of 60-65 d, flat-topped head and yellow inner leaves, characterized with high quality and good marketability. It is highly r...Shiyuchunbao is a new hybrid of early-mid maturity spring Chinese cabbage with growth period of 60-65 d, flat-topped head and yellow inner leaves, characterized with high quality and good marketability. It is highly resistant to viral diseases, downy mildew and soft rot disease, and can be cultivated in Beijing, Hebai, Heilongjiang and Yunnan.展开更多
Grain number per spikelet (GNS) is a key determinant of grain yield in wheat.A recombinant inbred line population comprising 300 lines was developed from a cross between a high GNS variety H461 and Chinese Spring from...Grain number per spikelet (GNS) is a key determinant of grain yield in wheat.A recombinant inbred line population comprising 300 lines was developed from a cross between a high GNS variety H461 and Chinese Spring from which the reference genome assembly of bread wheat was obtained.Both parents and the recombinant inbred lines were genotyped using the wheat 55K single nucleotide polymorphism(SNP) array.A high-density genetic map containing 21,197 SNPs was obtained.These markers covered each of the 21 chromosomes with a total linkage distance of 3792.71 c M.Locations of these markers in this linkage map were highly consistent with their physical locations in the genome assembly of Chinese Spring.The two parents and the whole RIL population were assessed for GNS in two consecutive years at two different locations.Based on multi-environment phenotype data and best liner unbiased prediction values,three quantitative trait loci (QTL) for GNS were identified.One of them located on chromosomes 2B and the other two on 2D.Phenotypic variation explained by these loci varied from 3.07%to26.57%.One of these QTL,QGns.sicau-2D-2,was identified in each of all trials conducted.Based on the best linear unbiased prediction values,this locus explained 19.59%–26.57%of phenotypic variation.A KASP(Kompetitive Allele-Specific PCR) marker closely linked with this locus was generated and used to validate the effects of this locus in three different genetic backgrounds.The identified QTL and the KASP marker developed for it will be highly valuable in fine-mapping the locus and in exploiting it for markerassisted selection in wheat breeding programs.展开更多
The entire gene of carboxyltransferase(CT) domain of acetyl-CoA carboxylase(ACCase) from Chinese Spring wheat(CSW) plastid was cloned firstly, and the 2.3 kb gene was inserted into PET28a^+ vector and expressed...The entire gene of carboxyltransferase(CT) domain of acetyl-CoA carboxylase(ACCase) from Chinese Spring wheat(CSW) plastid was cloned firstly, and the 2.3 kb gene was inserted into PET28a^+ vector and expressed in E. coil in a soluble state. The (His)6 fusion protein was identified by SDS-PAGE and Western blot. The recombinant protein was purified by affinity chromatography, and the calculated molecular mass(Mr) was 88000. The results of the sequence analysis indicate that the cloned gene(GeneBank accession No. EU124675) was a supplement and revision of the reported ACCase CT partial cDNA from Chinese Spring wheat plastid. The recombinant protein will be significant for us to investigate the recognizing mechanism between ACCase and herbicides, and further to screen new herbicides.展开更多
基金supported by the National Basic Re-search Program (973) of China (No. 2007CB407303)the National Natural Science Foundation of China (No.40525016)the Hi-Tech Research and Development Program (863) of China (No. 2006AA06A301).
文摘The solvent extractable organic compounds (SEOC), including n-alkanes, polycylic aromatic hydrocarbons, fatty acids, and dicarboxylic acids in PM2.5 during the 2007 Chinese Spring Festival in Beijing, were measured via gas chromatography-mass spectrometry for determining the characteristics and sources of these organic pollutants. The concentrations of total n-alkanes, PAHs, and organic acids before Chinese Spring Festival Eve (1025.5, 95.9, and 543.3 ng/m3, respectively) were higher than those after (536.6, 58.9, and 331.8 ng/m3, respectively), n-Aalkanes and PAHs had much higher concentration in nighttime than those in daytime because of high relative humidity and low wind speed during the night. Combustion of coal and exhaust emission were major sources of n- alkanes. It could be concluded by the characteristic ratios that the primary source of PAHs in fine particles was the combustion of coal, but the combustion of gasoline was in the next place. The ratios of C18:0/C16 indicated the contribution of vehicular emissions to the fatty acids. Dicarboxylic and aromatic acids were abundant in daytime than in nighttime because these acids were secondary organic acid and the photochemical degradation of aromatic hydrocarbons was the main source.
基金This study was supported by the Strategic Priority Resea rch Program of the Chinese Academy of Sciences(XDB27010302).
文摘A chromosome-level genome assembly of the bread wheat variety Chinese Spring(CS)has recently been published.Genome-wide identification of regulatory elements(REs)responsible for regulating gene activity is key to further mechanistic studies.Because epigenetic activity can reflect RE activity,defining chromatin states based on epigenomic features is an effective way to detect REs.Here,we present the web-based platform Chinese Spring chromatin state(CSCS),which provides CS chromatin signature information.CSCS indudes 15 recently published epigenomic data sets including open chromatin and major chromatin marks,which are further partitioned into 15 distinct chromatin states.CSCS curates detailed information about these chromatin states,with trained self-organization mapping(SOM)for segments in all chromatin states and JBrowse visualization for genomic regions or genes.Motif analysis for genomic regions or genes,GO analysis for genes and SOM analysis for new epige-nomic data sets are also integrated into CSCS.In summary,the CSCS database contains the combina-torial patterns of chromatin signatures in wheat and facilitates the detection of functi onal elements and further clarification of regulatory activities.We illustrate how CSCS enables biological insights using one example,demonstrating that CSCS is a highly useful resource for intensive data mining.CSCS is available at http://bioinfo.cemps.ac.cn/CSCS/.
文摘Tang-suits, traditional Chinese clothing, always inadvertently reveal a sort of classical flavor that let us enjoy tasting the strong oriental charm to our hearts’ content thanks to
基金Supported by Science and Technology Support Program of Shijiazhuang City(161490152A)~~
文摘Shiyuchunbao is a new hybrid of early-mid maturity spring Chinese cabbage with growth period of 60-65 d, flat-topped head and yellow inner leaves, characterized with high quality and good marketability. It is highly resistant to viral diseases, downy mildew and soft rot disease, and can be cultivated in Beijing, Hebai, Heilongjiang and Yunnan.
基金supported by the National Natural Science Foundation of China (31771794)the National Key Research and Development Program of China (2016YFD0101004 and 2017YFD0100900)the International Science & Technology Cooperation Program of the Bureau of Science and Technology of Chengdu China (2015DFA306002015-GH03-00008-HZ)。
文摘Grain number per spikelet (GNS) is a key determinant of grain yield in wheat.A recombinant inbred line population comprising 300 lines was developed from a cross between a high GNS variety H461 and Chinese Spring from which the reference genome assembly of bread wheat was obtained.Both parents and the recombinant inbred lines were genotyped using the wheat 55K single nucleotide polymorphism(SNP) array.A high-density genetic map containing 21,197 SNPs was obtained.These markers covered each of the 21 chromosomes with a total linkage distance of 3792.71 c M.Locations of these markers in this linkage map were highly consistent with their physical locations in the genome assembly of Chinese Spring.The two parents and the whole RIL population were assessed for GNS in two consecutive years at two different locations.Based on multi-environment phenotype data and best liner unbiased prediction values,three quantitative trait loci (QTL) for GNS were identified.One of them located on chromosomes 2B and the other two on 2D.Phenotypic variation explained by these loci varied from 3.07%to26.57%.One of these QTL,QGns.sicau-2D-2,was identified in each of all trials conducted.Based on the best linear unbiased prediction values,this locus explained 19.59%–26.57%of phenotypic variation.A KASP(Kompetitive Allele-Specific PCR) marker closely linked with this locus was generated and used to validate the effects of this locus in three different genetic backgrounds.The identified QTL and the KASP marker developed for it will be highly valuable in fine-mapping the locus and in exploiting it for markerassisted selection in wheat breeding programs.
基金Supported by the National Natural Science Foundation of China(Nos. 20432010, 20672045 and 30570405)
文摘The entire gene of carboxyltransferase(CT) domain of acetyl-CoA carboxylase(ACCase) from Chinese Spring wheat(CSW) plastid was cloned firstly, and the 2.3 kb gene was inserted into PET28a^+ vector and expressed in E. coil in a soluble state. The (His)6 fusion protein was identified by SDS-PAGE and Western blot. The recombinant protein was purified by affinity chromatography, and the calculated molecular mass(Mr) was 88000. The results of the sequence analysis indicate that the cloned gene(GeneBank accession No. EU124675) was a supplement and revision of the reported ACCase CT partial cDNA from Chinese Spring wheat plastid. The recombinant protein will be significant for us to investigate the recognizing mechanism between ACCase and herbicides, and further to screen new herbicides.