To investigate the effects of sudden change in wind loads on the running performance of trains on the bridge in crosswinds,a highway-railway one-story bridge was taken as the research object.Aerodynamic coefficients o...To investigate the effects of sudden change in wind loads on the running performance of trains on the bridge in crosswinds,a highway-railway one-story bridge was taken as the research object.Aerodynamic coefficients of the train and the bridge were measured in a series of train-bridge system segment models through wind tunnel tests when two trains passed each other on the bridge and when a train entered and left the wind barrier section of the bridge.Based on the improved SIMPACK and ANSYS rigid-flexible coupling simulation method,a wind-double train-track-bridge system coupled vibration model was established.The dynamic responses of the train were analyzed under the effects of sudden change in wind loads caused by two trains passing each other and a train entering and leaving the wind barrier section of the bridge.The results show that the effects of sudden wind load change caused by the trains passing each other had less effects on the running safety of the leeward-side train than the wind shielding effect caused by the windward-side train in the wind speed range of 10−25 m/s.With the decrease in the porosity of wind barriers,the effects of the sudden wind load change played an increasingly important role in the running safety and comfort of the train.With the increase in wind speed,the lateral response of the train increased obviously because of the effects of sudden wind load change,which affects both the lateral running stability and the comfort of the train.展开更多
基金Projects(51822803,51878080,51778073) supported by the National Natural Science Foundation of ChinaProjects(2020JJ3035,2018JJ3538) supported by the Hunan Provincial Natural Science Foundation of China。
文摘To investigate the effects of sudden change in wind loads on the running performance of trains on the bridge in crosswinds,a highway-railway one-story bridge was taken as the research object.Aerodynamic coefficients of the train and the bridge were measured in a series of train-bridge system segment models through wind tunnel tests when two trains passed each other on the bridge and when a train entered and left the wind barrier section of the bridge.Based on the improved SIMPACK and ANSYS rigid-flexible coupling simulation method,a wind-double train-track-bridge system coupled vibration model was established.The dynamic responses of the train were analyzed under the effects of sudden change in wind loads caused by two trains passing each other and a train entering and leaving the wind barrier section of the bridge.The results show that the effects of sudden wind load change caused by the trains passing each other had less effects on the running safety of the leeward-side train than the wind shielding effect caused by the windward-side train in the wind speed range of 10−25 m/s.With the decrease in the porosity of wind barriers,the effects of the sudden wind load change played an increasingly important role in the running safety and comfort of the train.With the increase in wind speed,the lateral response of the train increased obviously because of the effects of sudden wind load change,which affects both the lateral running stability and the comfort of the train.