Comprehensive Summary Aerobic oxidation has been catching more and more attention because of its atom economy and environmental friendliness.Oxidation of diols is a challenge due to various oxidative products.Thus,hig...Comprehensive Summary Aerobic oxidation has been catching more and more attention because of its atom economy and environmental friendliness.Oxidation of diols is a challenge due to various oxidative products.Thus,highly selective aerobic oxidation affording specific products is of current interest.In this work,a combination of Fe(NO_(3))_(3)·9H_(2)O/TEMPO/KCl catalysis has been identified as an efficient recipe for the aerobic oxidation of 1,4-diols affordingγ-butyrolactones under mild conditions.The reaction exhibits decent chemo-and regioselectivity of symmetrical and unsymmetrical 1,4-diols.The optically activeγ-lactones may also be prepared from optically active 1,4-diols without erosion of the ee via this method.Furthermore,this approach was successfully applied to synthesize NBP,a commercial drug.展开更多
Inherently chiral 6,7-diphenyldibenzo[e,g][1,4]diazocine(DDD)has been synthesized enantioselectively for the first time via chiral phosphoric acid(CPA)-catalyzed cyclocondensation of readily available[1,1′-biphenyl]-...Inherently chiral 6,7-diphenyldibenzo[e,g][1,4]diazocine(DDD)has been synthesized enantioselectively for the first time via chiral phosphoric acid(CPA)-catalyzed cyclocondensation of readily available[1,1′-biphenyl]-2,2′-diamine(1a)and benzil(2a)in 82%yield,with 98%ee under mild reaction conditions.The strategy could also be applied to racemic biaryl diamines through kinetic resolution.The unexpectedly high interconversion energy barriers between the enantiomers(ΔG=39.5 kcal/mol)and the chemical stability rendered DDD an ideal platform for developing new chiral ligands and catalysts.Unique inherently chiralDDD-based phosphoramidites,phosphoric acid,mono-and diphosphine ligands were prepared from optically pure diphenol derivative DDDOL as a common precursor.Preliminary asymmetric reactions catalyzed by Pd or Rh in the presence of newly developed ligands exhibited comparable or even better enantioselectivities than the corresponding BINOLor SPINOL-derived ligands.Density functional theory calculation revealed the origin of the enantioselectivity during the process.展开更多
报道了手性膦烯配体在金属铑催化的芳基硼酸对β-芳基-α,β-不饱和磺酸酯不对称共轭加成中的应用.经过系统的反应条件筛选和配体结构优化,发现含手性1,1'-联-2-萘酚骨架的膦烯配体L7与Rh(I)形成的催化剂可以高对映选择性地实现β-...报道了手性膦烯配体在金属铑催化的芳基硼酸对β-芳基-α,β-不饱和磺酸酯不对称共轭加成中的应用.经过系统的反应条件筛选和配体结构优化,发现含手性1,1'-联-2-萘酚骨架的膦烯配体L7与Rh(I)形成的催化剂可以高对映选择性地实现β-芳基-α,β-不饱和磺酸酯化合物的不对称1,4-加成反应.此反应体系条件温和,底物普适性广,并取得了较高的收率(up to 95%)和优秀的对映选择性(up to 99%ee),为合成手性偕二芳基取代的磺酸酯类化合物提供了一种新方法.展开更多
基金Financial support from the National Natural Science Foundation of China(21988101)is greatly appreciated.
文摘Comprehensive Summary Aerobic oxidation has been catching more and more attention because of its atom economy and environmental friendliness.Oxidation of diols is a challenge due to various oxidative products.Thus,highly selective aerobic oxidation affording specific products is of current interest.In this work,a combination of Fe(NO_(3))_(3)·9H_(2)O/TEMPO/KCl catalysis has been identified as an efficient recipe for the aerobic oxidation of 1,4-diols affordingγ-butyrolactones under mild conditions.The reaction exhibits decent chemo-and regioselectivity of symmetrical and unsymmetrical 1,4-diols.The optically activeγ-lactones may also be prepared from optically active 1,4-diols without erosion of the ee via this method.Furthermore,this approach was successfully applied to synthesize NBP,a commercial drug.
基金the National Natural Science Foundation of China(grant nos.21871268 and 22071250)the Natural Science Foundation of Guangdong Province of China(grant no.2020A1515011428)the“BAGUI Scholar”Program of Guangxi Province of China,and the SKLRD Project(grant no.SKLRD-Z-202014)for financial support.
文摘Inherently chiral 6,7-diphenyldibenzo[e,g][1,4]diazocine(DDD)has been synthesized enantioselectively for the first time via chiral phosphoric acid(CPA)-catalyzed cyclocondensation of readily available[1,1′-biphenyl]-2,2′-diamine(1a)and benzil(2a)in 82%yield,with 98%ee under mild reaction conditions.The strategy could also be applied to racemic biaryl diamines through kinetic resolution.The unexpectedly high interconversion energy barriers between the enantiomers(ΔG=39.5 kcal/mol)and the chemical stability rendered DDD an ideal platform for developing new chiral ligands and catalysts.Unique inherently chiralDDD-based phosphoramidites,phosphoric acid,mono-and diphosphine ligands were prepared from optically pure diphenol derivative DDDOL as a common precursor.Preliminary asymmetric reactions catalyzed by Pd or Rh in the presence of newly developed ligands exhibited comparable or even better enantioselectivities than the corresponding BINOLor SPINOL-derived ligands.Density functional theory calculation revealed the origin of the enantioselectivity during the process.
文摘报道了手性膦烯配体在金属铑催化的芳基硼酸对β-芳基-α,β-不饱和磺酸酯不对称共轭加成中的应用.经过系统的反应条件筛选和配体结构优化,发现含手性1,1'-联-2-萘酚骨架的膦烯配体L7与Rh(I)形成的催化剂可以高对映选择性地实现β-芳基-α,β-不饱和磺酸酯化合物的不对称1,4-加成反应.此反应体系条件温和,底物普适性广,并取得了较高的收率(up to 95%)和优秀的对映选择性(up to 99%ee),为合成手性偕二芳基取代的磺酸酯类化合物提供了一种新方法.