Three novel types of chiral calixarene derivatives 5, 8, and 10 were designed and synthesized by introducing chiral units to parent calixarenes. Their chiralities were confirmed by rotational analysis. Chiral recognit...Three novel types of chiral calixarene derivatives 5, 8, and 10 were designed and synthesized by introducing chiral units to parent calixarenes. Their chiralities were confirmed by rotational analysis. Chiral recognition properties of these host compounds towards L- and D-threonine were studied by UV-Vis spectroscopy. The results indicated that calixarene derivatives 5 and 8 exhibited good chiral recognition capabilities toward L- or D-threonine. Although calixarene derivative 10 had no evident chiral recognition ability, the supramolecules of calixarene derivative 10 with L- or D-threonine showed a hypochromic effect or hyperchromic effect respectively. Therefore, calixarene derivative 10 might serve as a good chiral UV-indicator.展开更多
This study investigates the effect of counterions on the chiral recognition of 1,1'-Binaphthyl-2,2'-diamine (BNA) and 1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate (BNP) enantiomers when using an amino a...This study investigates the effect of counterions on the chiral recognition of 1,1'-Binaphthyl-2,2'-diamine (BNA) and 1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate (BNP) enantiomers when using an amino acid-based surfactant undecanoyl L-leucine (und-Leu) as the chiral pseudostationary phase in capillary electrophoresis. The effects of using two different counterions (sodium and lysine) on the chiral recognition of binaphthyl derivatives were compared at varying pH conditions. The enantiomeric separation of BNA and BNP enantiomers via capillary electrophoresis, using und-Leu as the chiral recognition medium, significantly improved the enantiomeric resolution in capillary electrophoresis at pH 7 when using Lysine counterions as compared to using sodium as the counterion. More specifically, at a surfactant concentration of 45 mM, at pH 7, a significant increase in chiral selectivity was observed when lysine was used as the counterion compared to sodium. The enantiomeric resolution of BNA and BNP increased by 6-fold and 1.1-fold, respectively, in capillary electrophoresis experiments when lysine was utilized as the counterion compared to using sodium. Furthermore, the retention factor of BNA and BNP enantiomers also increased approximately 3.5-fold and 4-fold, respectively, in the presence of lysine counterions as compared to using sodium counterions. When running buffer in capillary electrophoresis was increased to pH 11, the resolution and retention factors were nearly identical when comparing the effects of the sodium and lysine counterions. This signifies the important role of lysine’s positive net charge on chiral recognition. This study provides insight into the potential advantages of using cationic, pH-dependent counterions such as lysine to significantly improve the chiral recognition of binaphthyl derivatives when using chiral anionic surfactants as the pseudostationary phase in capillary electrophoresis.展开更多
In this study, the chiral separation mechanisms of Dansyl amino acids, including Dansyl-Leucine (Dans-Leu), Dansyl-Norleucine (Dans-Nor), Dansyl-Tryptophan (Dans-Trp) and Dansyl-Phenylalanine (Dans-Phe) binding to pol...In this study, the chiral separation mechanisms of Dansyl amino acids, including Dansyl-Leucine (Dans-Leu), Dansyl-Norleucine (Dans-Nor), Dansyl-Tryptophan (Dans-Trp) and Dansyl-Phenylalanine (Dans-Phe) binding to poly-sodium </span><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">N</span></i><i><span style="font-family:Verdana;"></i></span></i><span style="font-family:Verdana;">-undecanoyl-(L)-Leucylvalinate, poly (SULV), were investigated using molecular dynamics simulations. Micellar electrokinetic chromatography (MEKC) has previously shown that when separating the enantiomers of these aforementioned Dansyl amino acids, the L-enantiomers bind stronger to poly (SULV) than the D-enantiomers. This study aims to investigate the molecular interactions that govern chiral recognition in these systems using computational methods. This study reveals that the computationally-calculated binding free energy values for Dansyl enantiomers binding to poly (SULV) are in agreement with the enantiomeric order produced in experimental MEKC studies. The L-enantiomers of Dans-Leu, Dans-Nor, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">21.8938, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">22.1763, </span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">21.3329 </span><span style="font-family:Verdana;">and </span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">13.3349 kJ</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">mol</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, respectively. The D-enantiomers of Dans-Leu, Dans-Nor</span><span style="font-family:Verdana;">, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">14.5811, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">15.9457, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">13.6408, and </span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">12.0959</span><b> </b><span style="font-family:Verdana;">kJ</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">mol</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, respectively. Furthermore, hydrogen bonding analyses w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> used to investigate and elucidate the molecular interactions that govern chiral recognition in these molecular systems.展开更多
Chiral tetraphenylethylene(TPE) dicycle tetraaldehyde and TPE dicycle tetraacids bearing optically pure groups on the cycles were designed and synthesized. Due to the propeller-like conformation immobilization of TPE ...Chiral tetraphenylethylene(TPE) dicycle tetraaldehyde and TPE dicycle tetraacids bearing optically pure groups on the cycles were designed and synthesized. Due to the propeller-like conformation immobilization of TPE unit, this new class of TPE dicycle was resolved into M-and P-enantiomers, which could emit strong circular polarized luminescence(CPL). Interestingly,these TPE helicates displayed exceptional ability of molecule recognition. While the TPE dicycle tetraaldehyde could detect the microscale water in anhydrous tetrahydrofuran, the chiral TPE dicycle tetraacid could display different fluorescent color after interacting with two enantiomers of a wide variety of chiral amines including monoamines, diamines, and aminols, which could be applied to chiral recognition of these chiral amines. Furthermore, the emission wavelength of TPE dicycle tetraacid was found to change linearly with the enantiomer purity of chiral amine from enantiomer excess(ee) percent-100% to +100%, for the first time showing the potential for quantitative chiral analysis of chiral amines based on emission wavelength change. The emission wavelength was affected less by environmental factors than fluorescence intensity, which would enable the chiral analysis based on wavelength change with higher accuracy and repeatability.展开更多
A new way to prepare cellulose-type chiral stationary phases (CSPs) has been established in the present work.Cellulose microspheres with a volume-average diameter of 11.5 m were prepared by an emulsion-solidificatio...A new way to prepare cellulose-type chiral stationary phases (CSPs) has been established in the present work.Cellulose microspheres with a volume-average diameter of 11.5 m were prepared by an emulsion-solidification method.Three new CSPs were obtained by crosslinking the cellulose microspheres with terephthaloyl chloride (TPC),and then modifying the crosslinked microspheres with 4-methylbenzoyl chloride,3,5-dimethylbenzoyl chloride and 3,5-dichlorobenzoyl chloride,respectively.The microspheres and the CSPs were characterized by FT-IR,element analysis and scanning electronic microscopy (SEM).The chiral recognition ability of the CSPs was evaluated with high-performance liquid chromatography (HPLC).The chromatographic results demonstrate that the CSP prepared from 3,5-dichlorobenzoyl chloride possesses better chiral recognition ability compared with two other CSPs.展开更多
Chiral nitrogen-containing calix[4]arene was easily synthesized by the reaction of 25,27-di(2-bromoethoxy)- 26,28-dihydroxy-5,11,17,23-tetrakis(t-butyl)calix[4]arene with S-(-)-1-phenylethylamine in excellent yi...Chiral nitrogen-containing calix[4]arene was easily synthesized by the reaction of 25,27-di(2-bromoethoxy)- 26,28-dihydroxy-5,11,17,23-tetrakis(t-butyl)calix[4]arene with S-(-)-1-phenylethylamine in excellent yield, and showed good ability to recognize the enantiomers of mandelic acid and 2,3-dibenzoyltartaric acid. This finding has potential application to assay and separation of enantiomers of the carboxylic acids.展开更多
A novel gelator that contained both Schiffbase and L-lysine moieties was synthesized and its gelation behavior was tested. This gelator can form gels in various organic solvents. The resulting gel can be applied as a ...A novel gelator that contained both Schiffbase and L-lysine moieties was synthesized and its gelation behavior was tested. This gelator can form gels in various organic solvents. The resulting gel can be applied as a fascinating platform for visual recognition of enantiomeric 1 -(2-hydroxynaphthalen- 1-yl)naphthalen-2-ol (B1NOL) through selective gel collapse. In addition, the mechanism for the reaction of the gel with chiral BINOL was investigated by scanning electron microscope and 1H nuclear magnetic resonance.展开更多
The development of a single analytical platform with different functions is highly desirable but remains a challenge at present.Here,a paper-based device based on fluorescent carbon dots(CDs)functionalized paper/MnO_(...The development of a single analytical platform with different functions is highly desirable but remains a challenge at present.Here,a paper-based device based on fluorescent carbon dots(CDs)functionalized paper/MnO_(2)nanosheets(MnO_(2)NS)hybrid devices(PCD/NS)was proposed for single-device multi-function applications.MnO_(2)NS functioned as a fluorescence quencher of CDs and recognizer of H_(2)O_(2)released from the oxidase catalyzed system.Fluorescence recovery would occur after the decomposition of MnO_(2)NS induced by H_(2)O_(2),by which a simple and effective strategy could be developed for fluorescence monitoring multiplex biological events.Xanthine(XA)sensing,xanthine oxidase(XOD)inhibitors screening analysis and chiral recognition of glucose enantiomers were performed on PCD/NS to investigate the multifunctional application of the paper-based device.By means of PCD/NS,XA could be determined in the range of 0.1–40μmol/L with a low detection of limit of 0.06μmol/L.The IC_(50)value of allopurinol,the model inhibitor of XOD,was sensitively detected to be 7.4μmol/L.Glucose enantiomers were also recognized in terms of the specific fluorescence response to d-glucose.This work firstly presented a paper-based device capable of biomarkers detection,inhibitors screening and chiral recognition,which enlightened a promising strategy for the construction of multifunctional devices and hold the great potential application in clinical diagnosis and drug discovery.展开更多
β-Amino acids(AAs),homologs ofα-AAs,are important building blocks of biological materials.Herein,chiral recognitions ofβ-AAs with Ir(III)complexes are reported,in favor of formation of the thermodynamically stable...β-Amino acids(AAs),homologs ofα-AAs,are important building blocks of biological materials.Herein,chiral recognitions ofβ-AAs with Ir(III)complexes are reported,in favor of formation of the thermodynamically stableΛ-[Ir(pq)_(2)(D-β-AAs)]andΔ-[Ir(pq)_(2)(L-β-AAs)](pq is 2-phenylquinoline)diastereomers.The photoreactions of[Ir(pq)_(2)(β-AA)]complexes are observed in an EtOH solution in the presence of O_(2) at room temperature.The primaryβ-AAs complexes,such as rac-[Ir(pq)_(2)(β-ala)](β-ala isβ-alanine),Δ-[Ir(pq)_(2)(D-β-ma)]andΛ-[Ir(pq)_(2)(D-β-ma)](β-ma isβ-methylalanine),Δ-[Ir(pq)_(2)(D-β-pa)]andΛ-[Ir(pq)_(2)(D-β-pa)](β-pa isβ-phenylalanine),and rac-[Ir(pq)_(2)(β-dma)](β-dma is 3,3-dimethyl-β-alanine),are interligand C—N cross-coupling in situ between pq andβ-AAs ligands.The secondaryβ-AA complexesΔ-[Ir(pq)_(2)(L-β-pro)]andΛ-[Ir(pq)_(2)(L-β-pro)](β-pro isβ-proline,2-(pyrrolidin-2-yl)acetic acid)are dehydrogenatively oxidized into imino acid complexesΔ-[Ir(pq)_(2)(L-β-pro-2H^(β)’)]andΛ-[Ir(pq)_(2)(L-β-pro-2H^(β)’)](L-β-pro-2H^(β)’=2-(3,4-dihydro-2H-pyrrol-2-yl)acetic acid),respectively.Moreover,the dehydrogenative reaction inΔ-[Ir(pq)_(2)(L-β-pro)]diastereomer is regioselective depending on the reaction temperature,affordingΔ-[Ir(pq)_(2)(L-β-pro-2H^(β)’)]andΔ-[Ir(pq)_(2)(L-β-pro-2H^(β))](β-pro-2H^(β)=2-(3,4-dihydro-2H-pyrrol-5-yl)acetic acid)at low temperature.The chiral recognitions and photoreactions of Ir(III)-β-AAs complexes are much different from the previous observations in Ir(III)-α-AAs complexes.展开更多
Understanding the regulatory mechanism of self-assembly processes is a necessity to modulate nanostructures and their properties. Herein, we have studied the mechanism of self-assembly in the C3 symmetric 1,3,5-benzen...Understanding the regulatory mechanism of self-assembly processes is a necessity to modulate nanostructures and their properties. Herein, we have studied the mechanism of self-assembly in the C3 symmetric 1,3,5-benzentricarboxylic amino acid methyl ester enantiomers(TPE) in a mixed solvent system consisting of methanol and water. The resultant chiral structure was used for chiral recognition. The formation of chiral structures from the synergistic effect of multiple noncovalent interaction forces was confirmed by various techniques. Molecular dynamics simulations were used to characterize the time evolution of TPE structure and properties in solution. The theoretical results were consistent with the experimental results. Furthermore, the chiral structure assembled by the building blocks of TPE molecules was highly stereoselective for diamine compounds.展开更多
Thermosensitive poly[N-isopropylacrylamide(NIPAM)-co-N-acryloyl-L-phenylalanine ethyl ester (NALPE)] microgels were prepared by the free radical polymerization of NIPAM and chiral monomer, NALPE. Such microgels ex...Thermosensitive poly[N-isopropylacrylamide(NIPAM)-co-N-acryloyl-L-phenylalanine ethyl ester (NALPE)] microgels were prepared by the free radical polymerization of NIPAM and chiral monomer, NALPE. Such microgels exhibited spherical shape and favorable monodispersity. Increasing the content of NALPE units would en- hance the average diameter, but decrease the thermosensitivity and volume-phase transition temperatures of the mi- crogels. Compared with PNIPAM microgels, the microgels containing NALPE units performed chiral recognozable capacities for D-phenylalanine and D-tartaric acid, and the enantioselectivity and adsorption capacity of the microgels improved with increasing the temperature and/or the content of NALPE units.展开更多
Two new chiral calixarenes bearing chiral pendants, which were from by-product of the antibiotic industry, were synthesized and characterized by 1H NMR, MS-FAB and elemental analysis. Studies of 1H NMR of the ...Two new chiral calixarenes bearing chiral pendants, which were from by-product of the antibiotic industry, were synthesized and characterized by 1H NMR, MS-FAB and elemental analysis. Studies of 1H NMR of the two calixarene derivatives indicate that they exist in cone conformation in solution. Results of chiral recognition of the two chiral ligands 2a and 2b towards the tartaric acid derivative 3 show that ligand 2a exhibited good chiral recognition abilities compared to ligand 2b.展开更多
Five chiral stationary phases (CSPs) were used to separate the enantiomers of a series of O,O-diethyl (p-methyl-benzenesulfonamindo)-aryl(alkyl)-methylphosphonates. A chiral recognition mechanism was presented to expl...Five chiral stationary phases (CSPs) were used to separate the enantiomers of a series of O,O-diethyl (p-methyl-benzenesulfonamindo)-aryl(alkyl)-methylphosphonates. A chiral recognition mechanism was presented to explain the resolution of these compounds. Results show that CSP with strong π-acceptor 3,5-dinitrobenzoyl group and high steric hindrance has the best resolution ability in chiral separation of O,O-diethyl (p-methylbenzenesulfonamindo)-aryl(alkyl)-methylphosphonates. When a CSP has just a strong π-acceptor 3,5-dinitrobenzoyl or high steric hindrance it does not have good chiral resolution ability. The chiral recognition is more difficult when the CSP has more than one asymmetric center.展开更多
A novel chirality pairing recognition was found between D-and L-amino acid derivatives.Novel spiral alkaloids formed in the recognition reaction.Possible mechanism was proposed for the stereoselective and chemoselecti...A novel chirality pairing recognition was found between D-and L-amino acid derivatives.Novel spiral alkaloids formed in the recognition reaction.Possible mechanism was proposed for the stereoselective and chemoselective reactions.展开更多
The NMR spectra revealed that the calixarene frame of 1, 3-disubstituted calix[4]arenes beating optically active groups is asymmetric, even without the formation of a sub-ring. This inherent chirality arises from the ...The NMR spectra revealed that the calixarene frame of 1, 3-disubstituted calix[4]arenes beating optically active groups is asymmetric, even without the formation of a sub-ring. This inherent chirality arises from the interaction of the two chiral groups, which hinder the substituents' free rotation. Thus, these chiral calix[4]arenes display good chiral recognition ability.展开更多
A molecular dynamic method in conjunction with a statistic test has been utilized to model chiral recognition of a-phenylethylamine on heptakis (2.6-di-O-butyl-3-O-butyryl)-β- cyclodextrin in gas chromatography. The ...A molecular dynamic method in conjunction with a statistic test has been utilized to model chiral recognition of a-phenylethylamine on heptakis (2.6-di-O-butyl-3-O-butyryl)-β- cyclodextrin in gas chromatography. The modelling data correlated with the chromatographic elution order and indicated that the preferred site of α-phenylethylamine is the interior of cavity.展开更多
Noble metal surfaces with intrinsic chirality serve as an ideal candidate for investigating enantioselective chemistry due to their superior chemical durability and high catalytic activity.Recently,significant advance...Noble metal surfaces with intrinsic chirality serve as an ideal candidate for investigating enantioselective chemistry due to their superior chemical durability and high catalytic activity.Recently,significant advance has been made in synthesizing metal nanocrystals with intrinsic chirality.Nonetheless,the majority reports are limited to gold.Herein,through a heteroepitaxial growth strategy,the synthesis of metal nanocrystals with intrinsic chirality to palladium was extended for the first time and their application in enantioselective recognition was demonstrated.The heteroepitaxial growth strategy allows for transferring the chirality of homochiral Au nanocrystals to Au@Pd core–shell nanocrystals.By employing the chiral Au@Pd nanocrystals as enantiomeric recognizing elements,a series of electrochemical sensors for chiral discrimination were developed.Under optimal conditions,the peak potential between D-dihydroxyphenylalanine(D-DOPA)and L-dihydroxyphenylalanine(L-DOPA)is about 80 m V,and the peak current of D-DOPA is 2 times as much as that of L-DOPA,which enables the determination of the enantiomeric excess(EE,%)of L-DOPA.Overall,this report not only introduces a heteroepitaxial growth strategy to synthesize metal nanocrystals with intrinsic chirality,but also demonstrates the superior capability of integrating intrinsic chirality and catalytic properties into metal nanocrystals for chiral recognition.展开更多
A novel and readily available binaphthyl-based fluorescent probe(S)-1 was designed and synthesized.(S)-1 can be used to not only chemoselectively discriminate 3 basic amino acids out of common amino acids,but also ena...A novel and readily available binaphthyl-based fluorescent probe(S)-1 was designed and synthesized.(S)-1 can be used to not only chemoselectively discriminate 3 basic amino acids out of common amino acids,but also enantioselectively recognize histidine.Encouragingly,enantioselective imaging of histidine in cells was achieved for the first time by the probe(S)-1.These performances endowed it potential application in the chiral analysis of basic amino acids in asymmetric synthesis and cell imaging for diagnosis of diseases caused by racemization of histidine.Nuclear magnetic resonance(NMR)and mass spectrometry investigations suggested that different reaction extent of(S)-1 with L/D-histidine and different product structures generated the observed enantioselective fluorescent response.The molecular structures and thermodynamic stability of the complexes,formed from(S)-1+Zn2+and enantiomers of histidine,were calculated by Gaussian 16 based on density functional theory(DFT)to validate the above action mechanism.展开更多
A novel BINOL-based fluorescence probe(S)-6 featuring a sodium sulfonate fragment at the 2'-position was designed and synthesized via simple synthetic procedures under mild reaction conditions.The watersoluble pro...A novel BINOL-based fluorescence probe(S)-6 featuring a sodium sulfonate fragment at the 2'-position was designed and synthesized via simple synthetic procedures under mild reaction conditions.The watersoluble probe(S)-6 displays excellent enantioselective recognition toward 15 common amino acids,and it can be used for enantiomeric excess determination of amino acids.The fluorescence intensity of(S)-6 treated with amino acids reaches the maximum after standing for only 30 min at room temperature and remains stable in the following 5.5 h,which has great potential in the application of chiral fluorescence analysis due to its timeliness and outstanding fluorescent stability.展开更多
基金National Natural Science Foundation of China(No. 20472065)
文摘Three novel types of chiral calixarene derivatives 5, 8, and 10 were designed and synthesized by introducing chiral units to parent calixarenes. Their chiralities were confirmed by rotational analysis. Chiral recognition properties of these host compounds towards L- and D-threonine were studied by UV-Vis spectroscopy. The results indicated that calixarene derivatives 5 and 8 exhibited good chiral recognition capabilities toward L- or D-threonine. Although calixarene derivative 10 had no evident chiral recognition ability, the supramolecules of calixarene derivative 10 with L- or D-threonine showed a hypochromic effect or hyperchromic effect respectively. Therefore, calixarene derivative 10 might serve as a good chiral UV-indicator.
文摘This study investigates the effect of counterions on the chiral recognition of 1,1'-Binaphthyl-2,2'-diamine (BNA) and 1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate (BNP) enantiomers when using an amino acid-based surfactant undecanoyl L-leucine (und-Leu) as the chiral pseudostationary phase in capillary electrophoresis. The effects of using two different counterions (sodium and lysine) on the chiral recognition of binaphthyl derivatives were compared at varying pH conditions. The enantiomeric separation of BNA and BNP enantiomers via capillary electrophoresis, using und-Leu as the chiral recognition medium, significantly improved the enantiomeric resolution in capillary electrophoresis at pH 7 when using Lysine counterions as compared to using sodium as the counterion. More specifically, at a surfactant concentration of 45 mM, at pH 7, a significant increase in chiral selectivity was observed when lysine was used as the counterion compared to sodium. The enantiomeric resolution of BNA and BNP increased by 6-fold and 1.1-fold, respectively, in capillary electrophoresis experiments when lysine was utilized as the counterion compared to using sodium. Furthermore, the retention factor of BNA and BNP enantiomers also increased approximately 3.5-fold and 4-fold, respectively, in the presence of lysine counterions as compared to using sodium counterions. When running buffer in capillary electrophoresis was increased to pH 11, the resolution and retention factors were nearly identical when comparing the effects of the sodium and lysine counterions. This signifies the important role of lysine’s positive net charge on chiral recognition. This study provides insight into the potential advantages of using cationic, pH-dependent counterions such as lysine to significantly improve the chiral recognition of binaphthyl derivatives when using chiral anionic surfactants as the pseudostationary phase in capillary electrophoresis.
文摘In this study, the chiral separation mechanisms of Dansyl amino acids, including Dansyl-Leucine (Dans-Leu), Dansyl-Norleucine (Dans-Nor), Dansyl-Tryptophan (Dans-Trp) and Dansyl-Phenylalanine (Dans-Phe) binding to poly-sodium </span><span style="font-family:Verdana;"><i></span><i><span style="font-family:Verdana;">N</span></i><i><span style="font-family:Verdana;"></i></span></i><span style="font-family:Verdana;">-undecanoyl-(L)-Leucylvalinate, poly (SULV), were investigated using molecular dynamics simulations. Micellar electrokinetic chromatography (MEKC) has previously shown that when separating the enantiomers of these aforementioned Dansyl amino acids, the L-enantiomers bind stronger to poly (SULV) than the D-enantiomers. This study aims to investigate the molecular interactions that govern chiral recognition in these systems using computational methods. This study reveals that the computationally-calculated binding free energy values for Dansyl enantiomers binding to poly (SULV) are in agreement with the enantiomeric order produced in experimental MEKC studies. The L-enantiomers of Dans-Leu, Dans-Nor, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">21.8938, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">22.1763, </span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">21.3329 </span><span style="font-family:Verdana;">and </span></span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">13.3349 kJ</span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">mol</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, respectively. The D-enantiomers of Dans-Leu, Dans-Nor</span><span style="font-family:Verdana;">, Dans-Trp, and Dans-Phe binding to their preferred binding pockets in poly (SULV) yielded binding free energy values of </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">14.5811, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">15.9457, </span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">13.6408, and </span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">12.0959</span><b> </b><span style="font-family:Verdana;">kJ</span></span><span style="font-family:Verdana;">·</span><span style="font-family:Verdana;">mol</span><sup><span style="font-family:Verdana;">-</span></sup><sup><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">, respectively. Furthermore, hydrogen bonding analyses w</span><span style="font-family:Verdana;">ere</span><span style="font-family:Verdana;"> used to investigate and elucidate the molecular interactions that govern chiral recognition in these molecular systems.
基金the National Natural Science Foundation of China (22072050 and 22372066) for financial support。
文摘Chiral tetraphenylethylene(TPE) dicycle tetraaldehyde and TPE dicycle tetraacids bearing optically pure groups on the cycles were designed and synthesized. Due to the propeller-like conformation immobilization of TPE unit, this new class of TPE dicycle was resolved into M-and P-enantiomers, which could emit strong circular polarized luminescence(CPL). Interestingly,these TPE helicates displayed exceptional ability of molecule recognition. While the TPE dicycle tetraaldehyde could detect the microscale water in anhydrous tetrahydrofuran, the chiral TPE dicycle tetraacid could display different fluorescent color after interacting with two enantiomers of a wide variety of chiral amines including monoamines, diamines, and aminols, which could be applied to chiral recognition of these chiral amines. Furthermore, the emission wavelength of TPE dicycle tetraacid was found to change linearly with the enantiomer purity of chiral amine from enantiomer excess(ee) percent-100% to +100%, for the first time showing the potential for quantitative chiral analysis of chiral amines based on emission wavelength change. The emission wavelength was affected less by environmental factors than fluorescence intensity, which would enable the chiral analysis based on wavelength change with higher accuracy and repeatability.
基金Supported by the National Natural Science Foundation of China (50973086)the Research Project of Department of Education of Hubei Province (Z20081501)
文摘A new way to prepare cellulose-type chiral stationary phases (CSPs) has been established in the present work.Cellulose microspheres with a volume-average diameter of 11.5 m were prepared by an emulsion-solidification method.Three new CSPs were obtained by crosslinking the cellulose microspheres with terephthaloyl chloride (TPC),and then modifying the crosslinked microspheres with 4-methylbenzoyl chloride,3,5-dimethylbenzoyl chloride and 3,5-dichlorobenzoyl chloride,respectively.The microspheres and the CSPs were characterized by FT-IR,element analysis and scanning electronic microscopy (SEM).The chiral recognition ability of the CSPs was evaluated with high-performance liquid chromatography (HPLC).The chromatographic results demonstrate that the CSP prepared from 3,5-dichlorobenzoyl chloride possesses better chiral recognition ability compared with two other CSPs.
基金Project supported by the National Natural Science Foundation of China (No. 20072007).
文摘Chiral nitrogen-containing calix[4]arene was easily synthesized by the reaction of 25,27-di(2-bromoethoxy)- 26,28-dihydroxy-5,11,17,23-tetrakis(t-butyl)calix[4]arene with S-(-)-1-phenylethylamine in excellent yield, and showed good ability to recognize the enantiomers of mandelic acid and 2,3-dibenzoyltartaric acid. This finding has potential application to assay and separation of enantiomers of the carboxylic acids.
基金We greatly appreciate the support of the National Natural Science Foundation of China (Grant Nos. 21272054 and 21502040), Natural Science Foundation of Hebei Province (B2016205249 and B2016205211), Youth Top-notch Talent Foundation of the Education Department of Hebei Province (No. BJ2014039), Science and Technology Research Fund of the Education Department of Hebei Province (No. ZD2015030) and the Startup Foundation of Hebei Normal University (Nos. L2015B08, L2015B09, L2015k02 and L2016Z01)
文摘A novel gelator that contained both Schiffbase and L-lysine moieties was synthesized and its gelation behavior was tested. This gelator can form gels in various organic solvents. The resulting gel can be applied as a fascinating platform for visual recognition of enantiomeric 1 -(2-hydroxynaphthalen- 1-yl)naphthalen-2-ol (B1NOL) through selective gel collapse. In addition, the mechanism for the reaction of the gel with chiral BINOL was investigated by scanning electron microscope and 1H nuclear magnetic resonance.
基金financially supported by the National Natural Science Foundation of China (No. 21804141)“Double First-Class University” Project (Nos. CPU2018GY07 and CPU2018GY21)
文摘The development of a single analytical platform with different functions is highly desirable but remains a challenge at present.Here,a paper-based device based on fluorescent carbon dots(CDs)functionalized paper/MnO_(2)nanosheets(MnO_(2)NS)hybrid devices(PCD/NS)was proposed for single-device multi-function applications.MnO_(2)NS functioned as a fluorescence quencher of CDs and recognizer of H_(2)O_(2)released from the oxidase catalyzed system.Fluorescence recovery would occur after the decomposition of MnO_(2)NS induced by H_(2)O_(2),by which a simple and effective strategy could be developed for fluorescence monitoring multiplex biological events.Xanthine(XA)sensing,xanthine oxidase(XOD)inhibitors screening analysis and chiral recognition of glucose enantiomers were performed on PCD/NS to investigate the multifunctional application of the paper-based device.By means of PCD/NS,XA could be determined in the range of 0.1–40μmol/L with a low detection of limit of 0.06μmol/L.The IC_(50)value of allopurinol,the model inhibitor of XOD,was sensitively detected to be 7.4μmol/L.Glucose enantiomers were also recognized in terms of the specific fluorescence response to d-glucose.This work firstly presented a paper-based device capable of biomarkers detection,inhibitors screening and chiral recognition,which enlightened a promising strategy for the construction of multifunctional devices and hold the great potential application in clinical diagnosis and drug discovery.
基金support from the National Natural Science Foundation of China(grant no.21971266).
文摘β-Amino acids(AAs),homologs ofα-AAs,are important building blocks of biological materials.Herein,chiral recognitions ofβ-AAs with Ir(III)complexes are reported,in favor of formation of the thermodynamically stableΛ-[Ir(pq)_(2)(D-β-AAs)]andΔ-[Ir(pq)_(2)(L-β-AAs)](pq is 2-phenylquinoline)diastereomers.The photoreactions of[Ir(pq)_(2)(β-AA)]complexes are observed in an EtOH solution in the presence of O_(2) at room temperature.The primaryβ-AAs complexes,such as rac-[Ir(pq)_(2)(β-ala)](β-ala isβ-alanine),Δ-[Ir(pq)_(2)(D-β-ma)]andΛ-[Ir(pq)_(2)(D-β-ma)](β-ma isβ-methylalanine),Δ-[Ir(pq)_(2)(D-β-pa)]andΛ-[Ir(pq)_(2)(D-β-pa)](β-pa isβ-phenylalanine),and rac-[Ir(pq)_(2)(β-dma)](β-dma is 3,3-dimethyl-β-alanine),are interligand C—N cross-coupling in situ between pq andβ-AAs ligands.The secondaryβ-AA complexesΔ-[Ir(pq)_(2)(L-β-pro)]andΛ-[Ir(pq)_(2)(L-β-pro)](β-pro isβ-proline,2-(pyrrolidin-2-yl)acetic acid)are dehydrogenatively oxidized into imino acid complexesΔ-[Ir(pq)_(2)(L-β-pro-2H^(β)’)]andΛ-[Ir(pq)_(2)(L-β-pro-2H^(β)’)](L-β-pro-2H^(β)’=2-(3,4-dihydro-2H-pyrrol-2-yl)acetic acid),respectively.Moreover,the dehydrogenative reaction inΔ-[Ir(pq)_(2)(L-β-pro)]diastereomer is regioselective depending on the reaction temperature,affordingΔ-[Ir(pq)_(2)(L-β-pro-2H^(β)’)]andΔ-[Ir(pq)_(2)(L-β-pro-2H^(β))](β-pro-2H^(β)=2-(3,4-dihydro-2H-pyrrol-5-yl)acetic acid)at low temperature.The chiral recognitions and photoreactions of Ir(III)-β-AAs complexes are much different from the previous observations in Ir(III)-α-AAs complexes.
基金supported by the National Natural Science Foundation of China(No.21962003)the Natural Science Foundation of Jiangsu Province(No.BK20190056)the“Fundamental Research Funds for the Central Universities”(No.021514380014)。
文摘Understanding the regulatory mechanism of self-assembly processes is a necessity to modulate nanostructures and their properties. Herein, we have studied the mechanism of self-assembly in the C3 symmetric 1,3,5-benzentricarboxylic amino acid methyl ester enantiomers(TPE) in a mixed solvent system consisting of methanol and water. The resultant chiral structure was used for chiral recognition. The formation of chiral structures from the synergistic effect of multiple noncovalent interaction forces was confirmed by various techniques. Molecular dynamics simulations were used to characterize the time evolution of TPE structure and properties in solution. The theoretical results were consistent with the experimental results. Furthermore, the chiral structure assembled by the building blocks of TPE molecules was highly stereoselective for diamine compounds.
基金Supported by the National Natural Science Foundation of China(No.20904039) and the Tianjin Research Program of Appli- cation Foundation and Advanced Technology, China(No. 10JCYBJC02900).
文摘Thermosensitive poly[N-isopropylacrylamide(NIPAM)-co-N-acryloyl-L-phenylalanine ethyl ester (NALPE)] microgels were prepared by the free radical polymerization of NIPAM and chiral monomer, NALPE. Such microgels exhibited spherical shape and favorable monodispersity. Increasing the content of NALPE units would en- hance the average diameter, but decrease the thermosensitivity and volume-phase transition temperatures of the mi- crogels. Compared with PNIPAM microgels, the microgels containing NALPE units performed chiral recognozable capacities for D-phenylalanine and D-tartaric acid, and the enantioselectivity and adsorption capacity of the microgels improved with increasing the temperature and/or the content of NALPE units.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .2 0 0 72 0 2 9)
文摘Two new chiral calixarenes bearing chiral pendants, which were from by-product of the antibiotic industry, were synthesized and characterized by 1H NMR, MS-FAB and elemental analysis. Studies of 1H NMR of the two calixarene derivatives indicate that they exist in cone conformation in solution. Results of chiral recognition of the two chiral ligands 2a and 2b towards the tartaric acid derivative 3 show that ligand 2a exhibited good chiral recognition abilities compared to ligand 2b.
基金Project supported by the National Natural Science Foundation of China.
文摘Five chiral stationary phases (CSPs) were used to separate the enantiomers of a series of O,O-diethyl (p-methyl-benzenesulfonamindo)-aryl(alkyl)-methylphosphonates. A chiral recognition mechanism was presented to explain the resolution of these compounds. Results show that CSP with strong π-acceptor 3,5-dinitrobenzoyl group and high steric hindrance has the best resolution ability in chiral separation of O,O-diethyl (p-methylbenzenesulfonamindo)-aryl(alkyl)-methylphosphonates. When a CSP has just a strong π-acceptor 3,5-dinitrobenzoyl or high steric hindrance it does not have good chiral resolution ability. The chiral recognition is more difficult when the CSP has more than one asymmetric center.
基金supports from NSFC(30873141)973 Program(2009CB522300)Hebei University and the State Key Laboratory of Phytochemistry and Plant Resources in West China.
文摘A novel chirality pairing recognition was found between D-and L-amino acid derivatives.Novel spiral alkaloids formed in the recognition reaction.Possible mechanism was proposed for the stereoselective and chemoselective reactions.
基金support of the National Natural Science Foundation of China(No.20072007).
文摘The NMR spectra revealed that the calixarene frame of 1, 3-disubstituted calix[4]arenes beating optically active groups is asymmetric, even without the formation of a sub-ring. This inherent chirality arises from the interaction of the two chiral groups, which hinder the substituents' free rotation. Thus, these chiral calix[4]arenes display good chiral recognition ability.
文摘A molecular dynamic method in conjunction with a statistic test has been utilized to model chiral recognition of a-phenylethylamine on heptakis (2.6-di-O-butyl-3-O-butyryl)-β- cyclodextrin in gas chromatography. The modelling data correlated with the chromatographic elution order and indicated that the preferred site of α-phenylethylamine is the interior of cavity.
基金financially supported by the National Natural Science Foundation of China(Nos.22072144,22102171 and 21974131)the Department of Science and Technology of Jilin Province(No.20200201080JC)。
文摘Noble metal surfaces with intrinsic chirality serve as an ideal candidate for investigating enantioselective chemistry due to their superior chemical durability and high catalytic activity.Recently,significant advance has been made in synthesizing metal nanocrystals with intrinsic chirality.Nonetheless,the majority reports are limited to gold.Herein,through a heteroepitaxial growth strategy,the synthesis of metal nanocrystals with intrinsic chirality to palladium was extended for the first time and their application in enantioselective recognition was demonstrated.The heteroepitaxial growth strategy allows for transferring the chirality of homochiral Au nanocrystals to Au@Pd core–shell nanocrystals.By employing the chiral Au@Pd nanocrystals as enantiomeric recognizing elements,a series of electrochemical sensors for chiral discrimination were developed.Under optimal conditions,the peak potential between D-dihydroxyphenylalanine(D-DOPA)and L-dihydroxyphenylalanine(L-DOPA)is about 80 m V,and the peak current of D-DOPA is 2 times as much as that of L-DOPA,which enables the determination of the enantiomeric excess(EE,%)of L-DOPA.Overall,this report not only introduces a heteroepitaxial growth strategy to synthesize metal nanocrystals with intrinsic chirality,but also demonstrates the superior capability of integrating intrinsic chirality and catalytic properties into metal nanocrystals for chiral recognition.
基金financial support from the National Natural Science Foundation of China(Nos.22074114,22377097,21877087)Natural Science Foundation of Hubei Province of China(Nos.2020CFB623,2021CFB556)+2 种基金Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(No.LCX202305)Wuhan Institute of Technology Graduate Education and Teaching Reform Research Project(Nos.2022JYXM09,2021JYXM07)Wuhan Institute of Technology Graduate Innovation Fund(No.CX2022450)are greatly appreciated。
文摘A novel and readily available binaphthyl-based fluorescent probe(S)-1 was designed and synthesized.(S)-1 can be used to not only chemoselectively discriminate 3 basic amino acids out of common amino acids,but also enantioselectively recognize histidine.Encouragingly,enantioselective imaging of histidine in cells was achieved for the first time by the probe(S)-1.These performances endowed it potential application in the chiral analysis of basic amino acids in asymmetric synthesis and cell imaging for diagnosis of diseases caused by racemization of histidine.Nuclear magnetic resonance(NMR)and mass spectrometry investigations suggested that different reaction extent of(S)-1 with L/D-histidine and different product structures generated the observed enantioselective fluorescent response.The molecular structures and thermodynamic stability of the complexes,formed from(S)-1+Zn2+and enantiomers of histidine,were calculated by Gaussian 16 based on density functional theory(DFT)to validate the above action mechanism.
基金financial support from the National Natural Science Foundation of China(Nos.21877087,22074114)Natural Science Foundation of Hubei Province of China(Nos.2020CFB623,2021CFB556)+3 种基金Key Laboratory for Green Chemical Process of Ministry of Education(No.GCP20200201)Hubei Key Laboratory of Novel Reactor and Green Chemical Technology(No.40201002)Wuhan Institute of Technology Graduate Education and Teaching Reform Research Project(Nos.2022JYXM09,2021JYXM07)Wuhan Institute of Technology Graduate Innovation Fund(Nos.CX2022450,CX2022009,CX2022058)are greatly appreciated.
文摘A novel BINOL-based fluorescence probe(S)-6 featuring a sodium sulfonate fragment at the 2'-position was designed and synthesized via simple synthetic procedures under mild reaction conditions.The watersoluble probe(S)-6 displays excellent enantioselective recognition toward 15 common amino acids,and it can be used for enantiomeric excess determination of amino acids.The fluorescence intensity of(S)-6 treated with amino acids reaches the maximum after standing for only 30 min at room temperature and remains stable in the following 5.5 h,which has great potential in the application of chiral fluorescence analysis due to its timeliness and outstanding fluorescent stability.