Desmodus rotundus and Diphylla ecaudata, both of which are mammals of the order Chiroptera, Desmodontidae family, their diet consisting exclusively of blood. D. rotundus is the main vector and transmitter of the rabie...Desmodus rotundus and Diphylla ecaudata, both of which are mammals of the order Chiroptera, Desmodontidae family, their diet consisting exclusively of blood. D. rotundus is the main vector and transmitter of the rabies virus, which affects human beings as well as several livestock species so the study of this bat species is of high importance within the fields of animal agriculture and public health. The present study describes and compares the histologic characteristics of the urinary system of two hematophagous bat species. A total of 5 bats from each species were captured in the municipalities of Progreso de Obregón, Hidalgo (D. rotundus), and Huayacocotla, Veracruz (D. ecaudata). Organs belonging to the urinary system were extracted: kidneys, ureters, urinary bladder, and urethra;samples were fixed using 10% formalin and processed by the paraffin embedding technique, obtaining sections of 5 µm thickness, which in turn were stained using hematoxylin-eosin (H-E) and Gomori trichrome (GT) stains. From the obtained histologic preparations, a descriptive and comparative analysis of the structural organography of the urinary system of both species was made, and no noteworthy histological differences between samples were noted. The present research is intended to provide a framework for future studies of these species’ currently understudied microscopic anatomy.展开更多
Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing t...Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing the resource utilization in task scheduling.The main advantage of this scheduling is to max-imize the performance and minimize the time loss.Various researchers examined numerous scheduling methods to achieve Quality of Service(QoS)and to reduce execution time.However,it had disadvantages in terms of low throughput and high response time.Hence,this study aimed to schedule the task efficiently and to eliminate the faults in scheduling the tasks to the Virtual Machines(VMs).For this purpose,the research proposed novel Particle Swarm Optimization-Bandwidth Aware divisible Task(PSO-BATS)scheduling with Multi-Layered Regression Host Employment(MLRHE)to sort out the issues of task scheduling and ease the scheduling operation by load balancing.The proposed efficient sche-duling provides benefits to both cloud users and servers.The performance evalua-tion is undertaken with respect to cost,Performance Improvement Rate(PIR)and makespan which revealed the efficiency of the proposed method.Additionally,comparative analysis is undertaken which confirmed the performance of the intro-duced system than conventional system for scheduling tasks with highflexibility.展开更多
Two major human-caused threats to ecosystems are habitat modification and the increasing frequency and intensity of extreme weather events.To study the combined effect of these threats,the authors used acoustic monito...Two major human-caused threats to ecosystems are habitat modification and the increasing frequency and intensity of extreme weather events.To study the combined effect of these threats,the authors used acoustic monitoring of bats along a habitat modification gradient on the island of Okinawa,Japan.During the observation period,the island experienced numerous typhoons and one supertyphoon.Native bat species remained active even at high wind speeds(up to 30 m/s in some cases).Milder typhoons had no observable effect on bat populations,with activity levels fully recovering within a few hours or days.The super typhoon also did not seem to affect bats in fully or partially forested habitats but caused their local disappearance at the urban site,which they have not re-colonized three years after the event.Notably,bats that disappeared at the urban site were species roosting in well-protected places such as caves and concrete structures.In all cases,the biomass of small flying insects and the acoustic activity of insects recovered within days after extreme weather events.Thus,the striking difference between habitats in supertyphoon effects on bats cannot be explained by the super typhoon directly killing bats,destroying their roosting sites,or decreasing the abundance of their prey.The results underscore the importance of preserving natural habitats in areas particularly affected by changing climate and show that the survival of species and ecosystems during the numerous episodes of climate change in the Earth’s history does not necessarily mean their ability to survive the accelerating climate change of our time.展开更多
Bats,notable as the only flying mammals,serve as natural reservoir hosts for various highly pathogenic viruses in humans(e.g.,SARS-CoV and Ebola virus).Furthermore,bats exhibit an unparalleled longevity among mammals ...Bats,notable as the only flying mammals,serve as natural reservoir hosts for various highly pathogenic viruses in humans(e.g.,SARS-CoV and Ebola virus).Furthermore,bats exhibit an unparalleled longevity among mammals relative to their size,particularly the Myotis bats,which can live up to 40 years.However,the mechanisms underlying these distinctive traits remain incompletely understood.In our prior research,we demonstrated that bats exhibit dampened STING-interferon activation,potentially conferring upon them the capacity to mitigate virus-or aging-induced inflammation.To substantiate this hypothesis,we established the first in vivo bat-mouse model for aging studies by integrating Myotis davidii bat STING(MdSTING)into the mouse genome.We monitored the genotypes of these mice and performed a longitudinal comparative transcriptomic analysis on MdSTING and wild-type mice over a 3-year aging process.Blood transcriptomic analysis indicated a reduction in aging-related inflammation in female MdSTING mice,as evidenced by significantly lower levels of pro-inflammatory cytokines and chemokines,immunopathology,and neutrophil recruitment in aged female MdSTING mice compared to aged wild-type mice in vivo.These results indicated that MdSTING knock-in attenuates the aging-related inflammatory response and may also improve the healthspan in mice in a sex-dependent manner.Although the underlying mechanism awaits further study,this research has critical implications for bat longevity research,potentially contributing to our comprehension of healthy aging in humans.展开更多
Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,...Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,and unique immune system.Advances in evolutionary biology,supported by high-quality reference genomes and comprehensive whole-genome data,have significantly enhanced our understanding of species origins,speciation mechanisms,adaptive evolutionary processes,and phenotypic diversity.However,genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data,with only a single published genome of R.ferrumequinum currently available.In this study,we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat(R.affinis).Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae.Notably,we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway,DNA repair,and apoptosis,which displayed signs of rapid evolution.In addition,we observed an expansion of the major histocompatibility complex class II(MHC-II)region and a higher copy number of the HLA-DQB2 gene in horseshoe bats compared to other chiropteran species.Based on whole-genome resequencing and population genomic analyses,we identified multiple candidate loci(e.g.,GLI3)associated with variations in echolocation call frequency across R.affinis subspecies.This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.展开更多
Soil ploughing is an important stage in the preparation of planting, causing disturbance to the physical, chemical and biological properties of the soil. Soil ploughing can affect the availability of nutrients and wat...Soil ploughing is an important stage in the preparation of planting, causing disturbance to the physical, chemical and biological properties of the soil. Soil ploughing can affect the availability of nutrients and water resources, and its effect can be short, medium or long-term. Soil ploughing accelerates surface heating and air circulation and encourages mineralisation by transforming organic matter into mineral salts, making nutrients soluble and accessible to plants. The aim of this study is to determine how soil ploughing affects the distribution of nutrients in the soil profile. The study focuses on nitrogen, carbon, phosphorus, calcium and magnesium, which are major elements of soil fertility on the Batéké plateaux in Congo. The results indicate that ploughing significantly modifies the distribution at depth des elements nutritifs: there is more accumulation at the surface than at depth (ei: nitrogen 1.34 t/ha ± 0.035 at 10 cm compared with 1.034 t/ha ± 0.098 at 50 cm) with a higher concentration of carbon (13.89 t/ha ± 0.87) followed by nitrogen (1.34 t/ha ± 0.035).展开更多
The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by s...The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by studying sedimentary dynamics based on the description of lithological facies in the field and granulometric analyses in the laboratory. In the field, six (6) lithostratigraphic logs were surveyed and 42 sand samples were taken for laboratory analysis. In the laboratory, the samples underwent granulometric, sieving and sedimentometry analyses, after washing with running water using a 63 µm sieve. These analyses made it possible to determine the granulometric classes of the samples. The sieving results allowed to determine the granulometric parameters (mean, standard deviation, mode, median, skewness, flattening or kurtosis) using the method of moments with the software “Gradistat V.8”, granulometric parameters with which the granulometric facies, the mode of transport and the deposition environment were determined using the diagrams. Morphoscopy made it possible to determine the form and aspect of the surface of the quartz grains constituting these sands. Granulometric analyses show that these silty-clay or clayey-silty sands are fine sands and rarely medium sands, moderately to well sorted and rarely well sorted. The dominant granulometric facies is hyperbolic (sigmoid), with parabolic facies being rare. The primary mode of transport of these sands is saltation, which dominates rolling. The dispersion of points in the diagrams shows that these sands originate from two depositional environments: aeolian and fluvial. Morphoscopic analysis reveals the presence of clean rounded matt grains (RM), dirty rounded matt grains (RS), shiny blunt grains (EL) and shiny rounded grains (RL). The rounded matt grains exhibit several impact marks. The presence of dirty rounded grains with a ferruginous cement on their surface indicates that these sands have been reworked. These sands have undergone two types of transport, first by wind (aeolian environment) and then by water (fluvial environment).展开更多
To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surfac...To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.展开更多
文摘Desmodus rotundus and Diphylla ecaudata, both of which are mammals of the order Chiroptera, Desmodontidae family, their diet consisting exclusively of blood. D. rotundus is the main vector and transmitter of the rabies virus, which affects human beings as well as several livestock species so the study of this bat species is of high importance within the fields of animal agriculture and public health. The present study describes and compares the histologic characteristics of the urinary system of two hematophagous bat species. A total of 5 bats from each species were captured in the municipalities of Progreso de Obregón, Hidalgo (D. rotundus), and Huayacocotla, Veracruz (D. ecaudata). Organs belonging to the urinary system were extracted: kidneys, ureters, urinary bladder, and urethra;samples were fixed using 10% formalin and processed by the paraffin embedding technique, obtaining sections of 5 µm thickness, which in turn were stained using hematoxylin-eosin (H-E) and Gomori trichrome (GT) stains. From the obtained histologic preparations, a descriptive and comparative analysis of the structural organography of the urinary system of both species was made, and no noteworthy histological differences between samples were noted. The present research is intended to provide a framework for future studies of these species’ currently understudied microscopic anatomy.
文摘Cloud computing plays a significant role in Information Technology(IT)industry to deliver scalable resources as a service.One of the most important factor to increase the performance of the cloud server is maximizing the resource utilization in task scheduling.The main advantage of this scheduling is to max-imize the performance and minimize the time loss.Various researchers examined numerous scheduling methods to achieve Quality of Service(QoS)and to reduce execution time.However,it had disadvantages in terms of low throughput and high response time.Hence,this study aimed to schedule the task efficiently and to eliminate the faults in scheduling the tasks to the Virtual Machines(VMs).For this purpose,the research proposed novel Particle Swarm Optimization-Bandwidth Aware divisible Task(PSO-BATS)scheduling with Multi-Layered Regression Host Employment(MLRHE)to sort out the issues of task scheduling and ease the scheduling operation by load balancing.The proposed efficient sche-duling provides benefits to both cloud users and servers.The performance evalua-tion is undertaken with respect to cost,Performance Improvement Rate(PIR)and makespan which revealed the efficiency of the proposed method.Additionally,comparative analysis is undertaken which confirmed the performance of the intro-duced system than conventional system for scheduling tasks with highflexibility.
文摘Two major human-caused threats to ecosystems are habitat modification and the increasing frequency and intensity of extreme weather events.To study the combined effect of these threats,the authors used acoustic monitoring of bats along a habitat modification gradient on the island of Okinawa,Japan.During the observation period,the island experienced numerous typhoons and one supertyphoon.Native bat species remained active even at high wind speeds(up to 30 m/s in some cases).Milder typhoons had no observable effect on bat populations,with activity levels fully recovering within a few hours or days.The super typhoon also did not seem to affect bats in fully or partially forested habitats but caused their local disappearance at the urban site,which they have not re-colonized three years after the event.Notably,bats that disappeared at the urban site were species roosting in well-protected places such as caves and concrete structures.In all cases,the biomass of small flying insects and the acoustic activity of insects recovered within days after extreme weather events.Thus,the striking difference between habitats in supertyphoon effects on bats cannot be explained by the super typhoon directly killing bats,destroying their roosting sites,or decreasing the abundance of their prey.The results underscore the importance of preserving natural habitats in areas particularly affected by changing climate and show that the survival of species and ecosystems during the numerous episodes of climate change in the Earth’s history does not necessarily mean their ability to survive the accelerating climate change of our time.
基金supported by the China Natural Science Foundation for Outstanding Scholars(82325032)Self-Supporting Program of Guangzhou Laboratory(SRPG22-001)。
文摘Bats,notable as the only flying mammals,serve as natural reservoir hosts for various highly pathogenic viruses in humans(e.g.,SARS-CoV and Ebola virus).Furthermore,bats exhibit an unparalleled longevity among mammals relative to their size,particularly the Myotis bats,which can live up to 40 years.However,the mechanisms underlying these distinctive traits remain incompletely understood.In our prior research,we demonstrated that bats exhibit dampened STING-interferon activation,potentially conferring upon them the capacity to mitigate virus-or aging-induced inflammation.To substantiate this hypothesis,we established the first in vivo bat-mouse model for aging studies by integrating Myotis davidii bat STING(MdSTING)into the mouse genome.We monitored the genotypes of these mice and performed a longitudinal comparative transcriptomic analysis on MdSTING and wild-type mice over a 3-year aging process.Blood transcriptomic analysis indicated a reduction in aging-related inflammation in female MdSTING mice,as evidenced by significantly lower levels of pro-inflammatory cytokines and chemokines,immunopathology,and neutrophil recruitment in aged female MdSTING mice compared to aged wild-type mice in vivo.These results indicated that MdSTING knock-in attenuates the aging-related inflammatory response and may also improve the healthspan in mice in a sex-dependent manner.Although the underlying mechanism awaits further study,this research has critical implications for bat longevity research,potentially contributing to our comprehension of healthy aging in humans.
基金supported by the China Postdoctoral Science Foundation(2022M722020)to Z.L.Key Project of Scientific Research Program of Shaanxi Provincial Education Department(23JY020)to Z.L.+5 种基金Natural Science Basic Research Program of Shaanxi(2024JCYBMS-152)to Z.L.Key Projects of Shaanxi University of Technology(SLGKYXM2302)to Z.L.Opening Foundation of Shaanxi University of Technology(SLGPT2019KF02-02)to Z.L.Natural Science Basic Research Program of Shaanxi(2020JM-280)to G.L.Fundamental Research Funds for the Central Universities(GK201902008)to G.LNational Natural Science Foundation of China(31570378)to X.M.
文摘Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,and unique immune system.Advances in evolutionary biology,supported by high-quality reference genomes and comprehensive whole-genome data,have significantly enhanced our understanding of species origins,speciation mechanisms,adaptive evolutionary processes,and phenotypic diversity.However,genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data,with only a single published genome of R.ferrumequinum currently available.In this study,we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat(R.affinis).Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae.Notably,we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway,DNA repair,and apoptosis,which displayed signs of rapid evolution.In addition,we observed an expansion of the major histocompatibility complex class II(MHC-II)region and a higher copy number of the HLA-DQB2 gene in horseshoe bats compared to other chiropteran species.Based on whole-genome resequencing and population genomic analyses,we identified multiple candidate loci(e.g.,GLI3)associated with variations in echolocation call frequency across R.affinis subspecies.This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.
文摘Soil ploughing is an important stage in the preparation of planting, causing disturbance to the physical, chemical and biological properties of the soil. Soil ploughing can affect the availability of nutrients and water resources, and its effect can be short, medium or long-term. Soil ploughing accelerates surface heating and air circulation and encourages mineralisation by transforming organic matter into mineral salts, making nutrients soluble and accessible to plants. The aim of this study is to determine how soil ploughing affects the distribution of nutrients in the soil profile. The study focuses on nitrogen, carbon, phosphorus, calcium and magnesium, which are major elements of soil fertility on the Batéké plateaux in Congo. The results indicate that ploughing significantly modifies the distribution at depth des elements nutritifs: there is more accumulation at the surface than at depth (ei: nitrogen 1.34 t/ha ± 0.035 at 10 cm compared with 1.034 t/ha ± 0.098 at 50 cm) with a higher concentration of carbon (13.89 t/ha ± 0.87) followed by nitrogen (1.34 t/ha ± 0.035).
文摘The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by studying sedimentary dynamics based on the description of lithological facies in the field and granulometric analyses in the laboratory. In the field, six (6) lithostratigraphic logs were surveyed and 42 sand samples were taken for laboratory analysis. In the laboratory, the samples underwent granulometric, sieving and sedimentometry analyses, after washing with running water using a 63 µm sieve. These analyses made it possible to determine the granulometric classes of the samples. The sieving results allowed to determine the granulometric parameters (mean, standard deviation, mode, median, skewness, flattening or kurtosis) using the method of moments with the software “Gradistat V.8”, granulometric parameters with which the granulometric facies, the mode of transport and the deposition environment were determined using the diagrams. Morphoscopy made it possible to determine the form and aspect of the surface of the quartz grains constituting these sands. Granulometric analyses show that these silty-clay or clayey-silty sands are fine sands and rarely medium sands, moderately to well sorted and rarely well sorted. The dominant granulometric facies is hyperbolic (sigmoid), with parabolic facies being rare. The primary mode of transport of these sands is saltation, which dominates rolling. The dispersion of points in the diagrams shows that these sands originate from two depositional environments: aeolian and fluvial. Morphoscopic analysis reveals the presence of clean rounded matt grains (RM), dirty rounded matt grains (RS), shiny blunt grains (EL) and shiny rounded grains (RL). The rounded matt grains exhibit several impact marks. The presence of dirty rounded grains with a ferruginous cement on their surface indicates that these sands have been reworked. These sands have undergone two types of transport, first by wind (aeolian environment) and then by water (fluvial environment).
基金supported jointlyby the Chinese Academy of Sciences under Grant KZCX2-YW-220the National Basic Research Program of Chinaunder Grant 2009CB421405the National Natural Sci-ence Foundation of China under Grant No.40730952
文摘To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.