To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the para...To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the parallel-track BiSAR system can not remain invariant in an aperture,an actual aperture is divided into subapertures so that it is reasonable to assume that the aircrafts move with constant acceleration vector in a subaperture.Based on this model,an improved CSA is derived.The new phase factors incorporate three-dimensional acceleration and velocity.The motion compensation procedure is integrated into the CSA without additional operation required.The simulation results show that the presented algorithm can efficiently resolve motion compensation for parallel-track BiSAR.展开更多
Instantaneous Doppler frequency for squint SAR imaging has been found with ChirpScaling Algorithm (CSA). Because the azimuth sample is not perpendicular to the range sample,the range signal must impact on the azimuth ...Instantaneous Doppler frequency for squint SAR imaging has been found with ChirpScaling Algorithm (CSA). Because the azimuth sample is not perpendicular to the range sample,the range signal must impact on the azimuth signal in the squint SAR data processing, andthe different slant range targets have different Doppler frequencies. From the mathematicalmodel of SAR echo signal, this paper carefully analyzes the instantaneous azimuth frequency, theinstantaneous Doppler frequency component of the azimuth frequency and the impact of rangechirp on azimuth frequency, which explains that Doppler frequency should be properly selected forcorrect SAR imaging in the squint SAR. The results of point target simulation experiments showthat the way is reasonable for the squint SAR and can effectively complete range compressionand azimuth focusing, and improve images' quality.展开更多
In this paper,a focusing approach is presented to widen the use of efficient monostatic imaging algorithms for azimuth-invariant bistatic synthetic aperture radar(SAR) data.The bistatic range history is modeled by a p...In this paper,a focusing approach is presented to widen the use of efficient monostatic imaging algorithms for azimuth-invariant bistatic synthetic aperture radar(SAR) data.The bistatic range history is modeled by a polynomial of azimuth time.Using this model,an analytic form of the signal spectrum in the 2D frequency domain is derived,and a simple single-valued relation between the transmitter and receive ranges is established.In this way,a lot of monostatic image formation algorithms can be extended for the bistatic SAR data,and a bistatic chirp scaling algorithm is developed as an application of the new approach.This algorithm can be used to process the azimuth-invariant bistatic configuration where the transmitter and receiver platforms are moving on parallel tracks with the same velocity.In addition,some simulation results are given to demonstrate the validity of the proposed approach.展开更多
文摘To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the parallel-track BiSAR system can not remain invariant in an aperture,an actual aperture is divided into subapertures so that it is reasonable to assume that the aircrafts move with constant acceleration vector in a subaperture.Based on this model,an improved CSA is derived.The new phase factors incorporate three-dimensional acceleration and velocity.The motion compensation procedure is integrated into the CSA without additional operation required.The simulation results show that the presented algorithm can efficiently resolve motion compensation for parallel-track BiSAR.
文摘Instantaneous Doppler frequency for squint SAR imaging has been found with ChirpScaling Algorithm (CSA). Because the azimuth sample is not perpendicular to the range sample,the range signal must impact on the azimuth signal in the squint SAR data processing, andthe different slant range targets have different Doppler frequencies. From the mathematicalmodel of SAR echo signal, this paper carefully analyzes the instantaneous azimuth frequency, theinstantaneous Doppler frequency component of the azimuth frequency and the impact of rangechirp on azimuth frequency, which explains that Doppler frequency should be properly selected forcorrect SAR imaging in the squint SAR. The results of point target simulation experiments showthat the way is reasonable for the squint SAR and can effectively complete range compressionand azimuth focusing, and improve images' quality.
基金the National High Technology Research and Development Program (863) of China(No. 2008AA12Z108)
文摘In this paper,a focusing approach is presented to widen the use of efficient monostatic imaging algorithms for azimuth-invariant bistatic synthetic aperture radar(SAR) data.The bistatic range history is modeled by a polynomial of azimuth time.Using this model,an analytic form of the signal spectrum in the 2D frequency domain is derived,and a simple single-valued relation between the transmitter and receive ranges is established.In this way,a lot of monostatic image formation algorithms can be extended for the bistatic SAR data,and a bistatic chirp scaling algorithm is developed as an application of the new approach.This algorithm can be used to process the azimuth-invariant bistatic configuration where the transmitter and receiver platforms are moving on parallel tracks with the same velocity.In addition,some simulation results are given to demonstrate the validity of the proposed approach.