A combination of both acid and alkali treatments was used to extract chitin from crab shell in this study. Then, a three factors (NaOH solution concentration, reaction time, reaction temperature) and three levels (35,...A combination of both acid and alkali treatments was used to extract chitin from crab shell in this study. Then, a three factors (NaOH solution concentration, reaction time, reaction temperature) and three levels (35, 45, 55; 2, 6, 10; 70, 105, 140) L 9(3 4) orthogonal experiment design is further adopted to conduct a de acetyl treatment to prepare chitosan by considering the viscosity and de acetyl degree of the chitosan as the main performance indexes. Determination of de acetyl degree of chitin complys with the procedures given by the reference and the viscosity meter was used for determination of viscosity of chitosan. The results show that the extraction of chitin shall use pulverized crab shell as the raw material and such raw material shall be immersed in 10% HCl solution for 6 hours and washed with water for one time in every 2 hours, then heated in boiled water for 2 hours by the use of 10% thin NaOH solution. Afterwards, the said material shall be washed with water to become a neutral solution and dried over a stove. When chitin is mixed with 55% NaOH solution in a proportion of 1∶10 (W/V, g/mL) and the reaction takes place at a temperature of 105℃ for 6 hours, chitosan having a de acetyl percentage of 94% and viscosity of >200 cps can be available.展开更多
Five kinds of carboxymethyl sulfochitosans with different regions such as N-carboxymethyl-O-sulfochitosan, O-carboxymethyl-N-sulfochitosan, O-carboxymethyl chitosan sulfate, N-carboxymethyl chitosan-6-sulfate, and N,O...Five kinds of carboxymethyl sulfochitosans with different regions such as N-carboxymethyl-O-sulfochitosan, O-carboxymethyl-N-sulfochitosan, O-carboxymethyl chitosan sulfate, N-carboxymethyl chitosan-6-sulfate, and N,O-carboxymethyl -N,O-sulfochitosan were prepared respectively by using differential carboxymethylation and sulfation methods, and their IR spectrum and 13C-NMR spectrum were measured.展开更多
A chitinase was identified in extracellular products of a virulent?Aeromonas hydrophila?isolated from diseased channel catfish (Ictalurus punctatus). Recombinant chitinase (rChi-Ah) was produced in?Escherichia coli. P...A chitinase was identified in extracellular products of a virulent?Aeromonas hydrophila?isolated from diseased channel catfish (Ictalurus punctatus). Recombinant chitinase (rChi-Ah) was produced in?Escherichia coli. Purified rChi-Ah had optimal activity at temperature of 42℃?and pH 6.5. The affinity (Km) for chitosan was 4.18 mg·ml-1?with?Vmax?of 202.5 mg·min-1·mg-1. With colloidal chitin as substrate, rChi-Ah generated N,N’-diacetyl-glucosamine predominantly. Conversion of chitosan (≥75% deacetylated) by rChi-Ah revealed five major products: 2 to 4 units of glucosamine, all of which had at least one acetyl group. It was determined that N-acetylated glucosamine was the recognition and cleavage site of rChi-Ah;the minimal and maximal cleavages were two and four glucosamine units, respectively. Functional analysis of rChi-Ah suggests that?A. hydrophilachitinase is a bioactive chitinolytic enzyme, which may benefit the pathogen for survival and/or infection.展开更多
Chitin was first discovered by its name from the Greek word“chiton”,which means“mail coat”.It is indeed a polysaccharide made up of naturally occurring acetyl-D-glucosamine monomers.Hatchett was the first research...Chitin was first discovered by its name from the Greek word“chiton”,which means“mail coat”.It is indeed a polysaccharide made up of naturally occurring acetyl-D-glucosamine monomers.Hatchett was the first researcher who extracted chitin from the shells of mollusks(crabs and lobsters),prawns,and crayfish in 1799.Later in 1811,Henri Braconnot discovered chitin in the cell walls of mushrooms and called it“fungine”.Chitin and chitosan are abundant in the biosphere as essential components of many organisms’exoskeletons and as by-products of the global seafood industry.The biopolymer must be deacetylated before chitosan can be produced.It can also be extracted using microbes in a biological extraction procedure.The development of products that take advantage of the bioactivities of the existing primary commercial source of chitin(crustacean)has lagged expectations.Also,the disadvantages of the present commercial source such as seasonality and competition for other uses among others has been one of the driving forces towards seeking alternative sources of chitin and chitosan in nature.This review highlights some of the efforts made by environmental scholars to locate possible commercial sources of chitin and chitosan in nature over time.展开更多
In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-pha...In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-phase suspension cross-linking polymerization. MRCCC presented uniform and narrow panicle size distribution as determined by the Laser Panicles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) study demonstrated that there were iron and cerium existing in MRCCC. The movement of MRCCC under magnetic field proved its magnetic property. The swelling kinetics in water or solutions with different pH indicated that MRCCC could be applied in solutions with pH greater than 1.0. The ferromagnetic fluid particles were stable in MRCCC soaked in solutions with pH 〉2.0. In view of these results, MRCCC can be used as material for separation, clarification, adsorption, sustained release and hydrolysis activity.展开更多
A cyclomaltoheptaose--cyclodextrin (-CD) crosslinked chitosan derivative via glyoxal or glutaraldehyde was prepared. The structures of -CD crosslined chitosan with glyoxal or glutaraldehyde were characterized by IR s...A cyclomaltoheptaose--cyclodextrin (-CD) crosslinked chitosan derivative via glyoxal or glutaraldehyde was prepared. The structures of -CD crosslined chitosan with glyoxal or glutaraldehyde were characterized by IR spectra. The surface morphology of the -CD crosslinked chitosan particles was examined using a scanning electron microscope. The immobilization capacity of ?CD on chitosan was affected on the weight ratio of -CD/chitosan, the utilization amount of crosslinking agent, the acidity of the reaction system and the temperature. The adsorption for nicotine indicated that the chitosan--CD was a good adsorbent.展开更多
The chitosan/β-glycerophosphate( CS/β-GP),a physical hydrogel system with thermosensitive and injectable features combined with biocompatibility and biodegradability, has great potentials as matrices for drug or cel...The chitosan/β-glycerophosphate( CS/β-GP),a physical hydrogel system with thermosensitive and injectable features combined with biocompatibility and biodegradability, has great potentials as matrices for drug or cell encapsulation and delivery,or as in situ gel-forming materials for tissue repair. Here,the chitin nanocrystal( Chi NC) was introduced into the aforementioned system, and its effects on solution behavior and mechanical properties was investigated. The results showed the incorporation of Chi NC complicated sol-to-gel transition process; a higher loading ratio( 20%) speeded up sol-to-gel transition rate,reduced the solto-gel transition temperature,while still maintained shear-thinning behavior or injectable feature. Moreover,the mechanical properties of gels were significantly enhanced by Chi NC, accompanied by decreased water uptake. The above mentioned behavior favored better applications as injectable tissue-repair implants.展开更多
Two parts of research work on preparation of chitosan are presented. One is about the optimization of preparation condition and the other about the preparation of two series of chitosan with special structures. The fi...Two parts of research work on preparation of chitosan are presented. One is about the optimization of preparation condition and the other about the preparation of two series of chitosan with special structures. The first series has the same degree of deacetylation but different molecular weights; and the second the same molecular weight but different in degree of deacetylation.展开更多
In order to investigate a key factor for the appearance of proton conductivity in chitin-chitosan mixed compounds, the chitin-chitosan mixed compounds (chitin)x(chitosan)1-x were prepared and these proton conductiviti...In order to investigate a key factor for the appearance of proton conductivity in chitin-chitosan mixed compounds, the chitin-chitosan mixed compounds (chitin)x(chitosan)1-x were prepared and these proton conductivities have been investigated. DC proton conductivity σ is obtained from Nyquist plot of impedance measurement data, and the relationship between σ and mixing ratio x has been made clear. It was found that the x dependence of σ is non-monotonous. That is, σ shows the anomalous behavior, and has peaks around x = 0.4 and 0.75. This result indicates that there exist optimal conditions for the realization of high-proton conductivity in the chitin-chitosan mixed compound in which the number of acetyl groups is different. From the FT-IR measurement, we have found that the behavior of proton conductivity in (chitin)x(chitosan)1-x is determined by the amount of water content changed by x. Using these results, proton conductivity, which is important for the application of conducting polymers in chitin-chitosan mixed compounds, will be able to be easily controlled by adjusting the mixing ratio x.展开更多
A number of materials are utilized to develop wound care dressing materials with metallic treatments such as ionic silver and zinc. Metallic ions if used for a prolonged time may lead to toxicity. Alternatively chitin...A number of materials are utilized to develop wound care dressing materials with metallic treatments such as ionic silver and zinc. Metallic ions if used for a prolonged time may lead to toxicity. Alternatively chitin,a natural polysaccharide found in nature, is utilized. It is found in fungi, crabs, mushrooms,squids, octopus, and many other living organisms. Chitin has similar structure to cellulose but its deacetylated derivate chitosan has amine groups that provide potential antibacterial properties along with a number of other advantages. Chitin in its natural form is found in three different structural forms,namely α,β,and γ.The β-chitin and chitosan are mostly found in the exoskeleton of squids. Loligo and Humboldt squids were studied. It is anticipated that Humboldt chitin is more effective in serving as antibacterial material and can be utilized for wound care. Differences in steriochemical structure were observed among β-chitin structures obtained and amine group's presences were found along with ability of materials to swell.展开更多
Chitosan,a renewable,non-toxic,and natural cationic polyelectrolyte,can be combined with many anionic polyelectrolytes(such as sodium alginate,hyaluronic acid,xylan,and gelatin)via electrostatic forces to form chitosa...Chitosan,a renewable,non-toxic,and natural cationic polyelectrolyte,can be combined with many anionic polyelectrolytes(such as sodium alginate,hyaluronic acid,xylan,and gelatin)via electrostatic forces to form chitosan-based polyelectrolyte composites under certain conditions.This review summarizes various methods of preparing chitosan-based polyelectrolyte composites and analyzes their applications in clinical medicine and agriculture,as well as pharmaceutical,tissue,food,environmental,and textile engineering fields.The future development direction and potential of chitosan-based polyelectrolytes are also discussed.展开更多
[Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by...[Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by emulsion crosslinking method.The encapsulation efficiency,drug loading and ID 50 were used as the evaluation indicators,and the comprehensive score(OD)obtained by"coefficient of variation-AHP comprehensive weighting method"was used as the final evaluation indicator.The formulation design and preparation process were optimized by single factor experiment and Box-Behnken response surface methodology,and the optimal process parameters were determined.[Results]The optimal formulation and preparation process parameters of oregano oil microspheres were as follows:the ratio of oregano oil to chitosan was 2∶1,the emulsifying speed of double emulsion was 200 r/min,the amount of emulsifier in the colostrum was 4%,and the volume of curing agent was 1.0 mL.The average encapsulation efficiency was 45.33%±1.32%,the average drug loading was 30.59%±2.45%,and the median diameter(ID 50)was 52.596μm±0.023%.[Conclusions]The encapsulation efficiency,drug loading and ID 50 of oregano oil chitosan microspheres prepared by emulsion crosslinking method met the requirements.The drug-loaded microsphere not only can be used as a preparation finished product for direct application,but also be used as a product intermediate to lay a foundation for the research and development of subsequent dosage forms.展开更多
Chitin is the second most abundant polysaccharide,produced mainly as an industrial waste stream during crustacean processing.Chitin can be derived into chitosan through the deacetylation process.Conversion of shrimp w...Chitin is the second most abundant polysaccharide,produced mainly as an industrial waste stream during crustacean processing.Chitin can be derived into chitosan through the deacetylation process.Conversion of shrimp waste into chitosan via the deacetylation process could be considered a practical approach for shell waste remediation.In this study,chitosan’s physicochemical characteristics extracted from two types of Pacific white leg shrimp,L.vannamei’s shell(i.e.,rough and smooth),were compared with commercial chitosan.The yield,moisture,ash,solubility,water and fat binding capacity were measured.The degree of deacetylation(DDA)was calculated using FTIR,and their chemical Structure was confirmed using XRD and SEM-EDS.Both extracted chitosan showed no significant difference in yield,moisture,ash,solubility and water binding capacity but showed a significant difference with commercial chitosan.Moreover,the fat binding capacity of commercial chitosan showed the lowest percentage(408.34±0.83%)as compared to extracted chitosan(smooth shell 549.59±12.48%;rough shell 500.55±12.10%).The DDA indicated that extracted chitosan from the smooth and rough shell was considered good chitosan as compared to commercial chitosan with 84.08±1.27%,80.78±0.79%and 74.99±1.48%,respectively.Additionally,the presence of hydroxyl and amino groups from FTIR and a good crystallinity index was recorded using XRD of extracted chitosan.Based on observed characteristics,shrimp shell waste from L.vannamei can achieve chitosan standard quality as a biopolymer and highly potential to be applied in various industrial applications.展开更多
Chitosan has a unique chemical structure with high charge density, reactive hydroxyl and amino groups, and extensive hydrogen bonding. Chitin deacetylase (EC 3.5.1.41) catalyzes the hydrolysis of the N-acetamido group...Chitosan has a unique chemical structure with high charge density, reactive hydroxyl and amino groups, and extensive hydrogen bonding. Chitin deacetylase (EC 3.5.1.41) catalyzes the hydrolysis of the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin, converting it to chitosan and releasing acetate. The entire ORF of the CDA2 gene encoding one of the two isoforms of chitin deacetylase from Saccharomyces cerevisiae was cloned in Pichia pastoris. The Tg (Cda2-6xHis)p was expressed at high levels as a soluble intracellular protein after induction of the recombinant yeast culture with methanol, and purified using nickel-nitrilotriacetic acid chelate affinity chromatography, resulting in a protein preparation with a purity of >98% and an overall yield of 79%. Chitin deacetylase activity was measured by a colorimetric method based on the O-phthalaldehyde reagent, which detects primary amines remaining in chitinous substrate after acetate release. The recombinant enzyme could deacetylate chitin, chitobiose, chitotriose and chitotetraose, with an optimum temperature of 50°C and pH 8.0, determined using oligochitosaccharides as the substrates. The recombinant protein was also able to deacetylate its solid natural substrate, shrimp chitin, to a limited extent, producing chitosan with a degree of acetylation (DA) of 89% as determined by Fourier transform infrared spectroscopy. The degree of deacetylation was increased by pre-hydrolysis of crystalline shrimp chitin by chitinases, which increased the deacetylation ratio triggered by chitin deacetylase, producing chito-oligosaccharides with a degree of acetylation of 33%. The results described here open the possibility to use the rCda2p, combined with chitinases, for biocatalytic conversion of chitin to chitosan with controlled degrees of deacetylation. We show herein that the crystalline chitin form can be cleanly produced in virtually quantitative yield if a combined and sequential enzyme treatment is performed.展开更多
Chitosan is a biopolymer obtained from chitin, where the N-acetylglucosamine monomer is in its deacetylated form; this polymer is useful for a wide variety of industrial applications. The properties and uses of chitos...Chitosan is a biopolymer obtained from chitin, where the N-acetylglucosamine monomer is in its deacetylated form; this polymer is useful for a wide variety of industrial applications. The properties and uses of chitosan depend on its physical and chemical characteristics, which result from the treatments used for its production. In this study, we report the preparation and characterization ofchitosan oligosaccharides by a green synthesis from crystalline shrimp chitin, using a sequential enzyme treatment by chitinase and chitin deacetylase. Chitinases were purified from grapes and used to rupture the crystalline shrimp chitin structure, modifying the crystallinity index from 57.6% to 15.9%. The resultant polymers were deacetylated using a recombinant chitin deacetylase from Saccharomyces cerevisiae, which was cloned and expressed in Pichia pastoris. The chitosans produced showed an estimated DA (degree of acetylation) of approximately 20%, and the molecular weights ranged from -7,600 to -3,700 after treatment in pH 3.0 and pH 6.0 for 10 min and 40 min, respectively. Physical and chemical characterization of the products indicated that enzyme fragmentation of chitin probably makes the acetamide groups more accessible to deacetylation, forming homogeneous polymers that are free of hazardous sub-products, have defined low molecular weights, and are highly deacetylated.展开更多
The methods of preparation of magnetic chitosan microspheres have been introduced. In addition, their applications in the wastewater treatment, based on different kinds of wastewater, have been reviewed, and their mec...The methods of preparation of magnetic chitosan microspheres have been introduced. In addition, their applications in the wastewater treatment, based on different kinds of wastewater, have been reviewed, and their mechanisms have been discussed.展开更多
文摘A combination of both acid and alkali treatments was used to extract chitin from crab shell in this study. Then, a three factors (NaOH solution concentration, reaction time, reaction temperature) and three levels (35, 45, 55; 2, 6, 10; 70, 105, 140) L 9(3 4) orthogonal experiment design is further adopted to conduct a de acetyl treatment to prepare chitosan by considering the viscosity and de acetyl degree of the chitosan as the main performance indexes. Determination of de acetyl degree of chitin complys with the procedures given by the reference and the viscosity meter was used for determination of viscosity of chitosan. The results show that the extraction of chitin shall use pulverized crab shell as the raw material and such raw material shall be immersed in 10% HCl solution for 6 hours and washed with water for one time in every 2 hours, then heated in boiled water for 2 hours by the use of 10% thin NaOH solution. Afterwards, the said material shall be washed with water to become a neutral solution and dried over a stove. When chitin is mixed with 55% NaOH solution in a proportion of 1∶10 (W/V, g/mL) and the reaction takes place at a temperature of 105℃ for 6 hours, chitosan having a de acetyl percentage of 94% and viscosity of >200 cps can be available.
基金supported by the Development Project of Science and Technology of Qingdao(02-1-Kchhh-58)National‘863’High Technology Project of China(819-07-03)
文摘Five kinds of carboxymethyl sulfochitosans with different regions such as N-carboxymethyl-O-sulfochitosan, O-carboxymethyl-N-sulfochitosan, O-carboxymethyl chitosan sulfate, N-carboxymethyl chitosan-6-sulfate, and N,O-carboxymethyl -N,O-sulfochitosan were prepared respectively by using differential carboxymethylation and sulfation methods, and their IR spectrum and 13C-NMR spectrum were measured.
文摘A chitinase was identified in extracellular products of a virulent?Aeromonas hydrophila?isolated from diseased channel catfish (Ictalurus punctatus). Recombinant chitinase (rChi-Ah) was produced in?Escherichia coli. Purified rChi-Ah had optimal activity at temperature of 42℃?and pH 6.5. The affinity (Km) for chitosan was 4.18 mg·ml-1?with?Vmax?of 202.5 mg·min-1·mg-1. With colloidal chitin as substrate, rChi-Ah generated N,N’-diacetyl-glucosamine predominantly. Conversion of chitosan (≥75% deacetylated) by rChi-Ah revealed five major products: 2 to 4 units of glucosamine, all of which had at least one acetyl group. It was determined that N-acetylated glucosamine was the recognition and cleavage site of rChi-Ah;the minimal and maximal cleavages were two and four glucosamine units, respectively. Functional analysis of rChi-Ah suggests that?A. hydrophilachitinase is a bioactive chitinolytic enzyme, which may benefit the pathogen for survival and/or infection.
基金This study is funded by the Long Term Research Grant Scheme(LRGS/1/2018/USM/01/1/1)(LRGS/2018/USM-UKM/EWS/01)granted by Ministry of Higher Education Malaysia for funding this research project.
文摘Chitin was first discovered by its name from the Greek word“chiton”,which means“mail coat”.It is indeed a polysaccharide made up of naturally occurring acetyl-D-glucosamine monomers.Hatchett was the first researcher who extracted chitin from the shells of mollusks(crabs and lobsters),prawns,and crayfish in 1799.Later in 1811,Henri Braconnot discovered chitin in the cell walls of mushrooms and called it“fungine”.Chitin and chitosan are abundant in the biosphere as essential components of many organisms’exoskeletons and as by-products of the global seafood industry.The biopolymer must be deacetylated before chitosan can be produced.It can also be extracted using microbes in a biological extraction procedure.The development of products that take advantage of the bioactivities of the existing primary commercial source of chitin(crustacean)has lagged expectations.Also,the disadvantages of the present commercial source such as seasonality and competition for other uses among others has been one of the driving forces towards seeking alternative sources of chitin and chitosan in nature.This review highlights some of the efforts made by environmental scholars to locate possible commercial sources of chitin and chitosan in nature over time.
基金supported by the Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-year Plan Period(No.2008BA-D94B09)the National Natural Science Foundation of China(No.30972289)
文摘In this study, the water-based ferromagnetic fluid and magnetic resin made from chitosan and cerium complex (MRCCC) were successfully prepared by using the chemical co-precipitation technique and by the reversed-phase suspension cross-linking polymerization. MRCCC presented uniform and narrow panicle size distribution as determined by the Laser Panicles Sizer. The Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) study demonstrated that there were iron and cerium existing in MRCCC. The movement of MRCCC under magnetic field proved its magnetic property. The swelling kinetics in water or solutions with different pH indicated that MRCCC could be applied in solutions with pH greater than 1.0. The ferromagnetic fluid particles were stable in MRCCC soaked in solutions with pH 〉2.0. In view of these results, MRCCC can be used as material for separation, clarification, adsorption, sustained release and hydrolysis activity.
文摘A cyclomaltoheptaose--cyclodextrin (-CD) crosslinked chitosan derivative via glyoxal or glutaraldehyde was prepared. The structures of -CD crosslined chitosan with glyoxal or glutaraldehyde were characterized by IR spectra. The surface morphology of the -CD crosslinked chitosan particles was examined using a scanning electron microscope. The immobilization capacity of ?CD on chitosan was affected on the weight ratio of -CD/chitosan, the utilization amount of crosslinking agent, the acidity of the reaction system and the temperature. The adsorption for nicotine indicated that the chitosan--CD was a good adsorbent.
基金National Natural Science Foundation of China(No.51303024)
文摘The chitosan/β-glycerophosphate( CS/β-GP),a physical hydrogel system with thermosensitive and injectable features combined with biocompatibility and biodegradability, has great potentials as matrices for drug or cell encapsulation and delivery,or as in situ gel-forming materials for tissue repair. Here,the chitin nanocrystal( Chi NC) was introduced into the aforementioned system, and its effects on solution behavior and mechanical properties was investigated. The results showed the incorporation of Chi NC complicated sol-to-gel transition process; a higher loading ratio( 20%) speeded up sol-to-gel transition rate,reduced the solto-gel transition temperature,while still maintained shear-thinning behavior or injectable feature. Moreover,the mechanical properties of gels were significantly enhanced by Chi NC, accompanied by decreased water uptake. The above mentioned behavior favored better applications as injectable tissue-repair implants.
文摘Two parts of research work on preparation of chitosan are presented. One is about the optimization of preparation condition and the other about the preparation of two series of chitosan with special structures. The first series has the same degree of deacetylation but different molecular weights; and the second the same molecular weight but different in degree of deacetylation.
文摘In order to investigate a key factor for the appearance of proton conductivity in chitin-chitosan mixed compounds, the chitin-chitosan mixed compounds (chitin)x(chitosan)1-x were prepared and these proton conductivities have been investigated. DC proton conductivity σ is obtained from Nyquist plot of impedance measurement data, and the relationship between σ and mixing ratio x has been made clear. It was found that the x dependence of σ is non-monotonous. That is, σ shows the anomalous behavior, and has peaks around x = 0.4 and 0.75. This result indicates that there exist optimal conditions for the realization of high-proton conductivity in the chitin-chitosan mixed compound in which the number of acetyl groups is different. From the FT-IR measurement, we have found that the behavior of proton conductivity in (chitin)x(chitosan)1-x is determined by the amount of water content changed by x. Using these results, proton conductivity, which is important for the application of conducting polymers in chitin-chitosan mixed compounds, will be able to be easily controlled by adjusting the mixing ratio x.
文摘A number of materials are utilized to develop wound care dressing materials with metallic treatments such as ionic silver and zinc. Metallic ions if used for a prolonged time may lead to toxicity. Alternatively chitin,a natural polysaccharide found in nature, is utilized. It is found in fungi, crabs, mushrooms,squids, octopus, and many other living organisms. Chitin has similar structure to cellulose but its deacetylated derivate chitosan has amine groups that provide potential antibacterial properties along with a number of other advantages. Chitin in its natural form is found in three different structural forms,namely α,β,and γ.The β-chitin and chitosan are mostly found in the exoskeleton of squids. Loligo and Humboldt squids were studied. It is anticipated that Humboldt chitin is more effective in serving as antibacterial material and can be utilized for wound care. Differences in steriochemical structure were observed among β-chitin structures obtained and amine group's presences were found along with ability of materials to swell.
文摘Chitosan,a renewable,non-toxic,and natural cationic polyelectrolyte,can be combined with many anionic polyelectrolytes(such as sodium alginate,hyaluronic acid,xylan,and gelatin)via electrostatic forces to form chitosan-based polyelectrolyte composites under certain conditions.This review summarizes various methods of preparing chitosan-based polyelectrolyte composites and analyzes their applications in clinical medicine and agriculture,as well as pharmaceutical,tissue,food,environmental,and textile engineering fields.The future development direction and potential of chitosan-based polyelectrolytes are also discussed.
基金National Natural Science Foundation of China(81560659)General Program of Natural Science Foundation of Jiangxi Province(2023BAB206169)+2 种基金Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2200903&GJJ2200952)Science and Technology Plan of Jiangxi Provincial Health Commission(202211411)National College Students Innovation and Entrepreneurship Training Program(202310412028&202110412041).
文摘[Objectives]To optimize the formulation and preparation of oregano oil microspheres by Box-Behnken response surface methodology.[Methods]Chitosan was used as the carrier material to prepare oregano oil microspheres by emulsion crosslinking method.The encapsulation efficiency,drug loading and ID 50 were used as the evaluation indicators,and the comprehensive score(OD)obtained by"coefficient of variation-AHP comprehensive weighting method"was used as the final evaluation indicator.The formulation design and preparation process were optimized by single factor experiment and Box-Behnken response surface methodology,and the optimal process parameters were determined.[Results]The optimal formulation and preparation process parameters of oregano oil microspheres were as follows:the ratio of oregano oil to chitosan was 2∶1,the emulsifying speed of double emulsion was 200 r/min,the amount of emulsifier in the colostrum was 4%,and the volume of curing agent was 1.0 mL.The average encapsulation efficiency was 45.33%±1.32%,the average drug loading was 30.59%±2.45%,and the median diameter(ID 50)was 52.596μm±0.023%.[Conclusions]The encapsulation efficiency,drug loading and ID 50 of oregano oil chitosan microspheres prepared by emulsion crosslinking method met the requirements.The drug-loaded microsphere not only can be used as a preparation finished product for direct application,but also be used as a product intermediate to lay a foundation for the research and development of subsequent dosage forms.
基金funded by The Ministry of Higher Education(MOHE)Malaysia,under The Higher Institution Centre of Excellence(HICoE)Institute of Tropical Aquaculture and Fisheries(AKUATROP)Program[Vot.No.63933,JPT.S(BPKI)2000/016/018/015 Jld.3(23)and Vot.No.56050,UMT/PPPI/2-2/5 Jld.2(24)].This work was also funded by the Long-Term Research Grant Scheme 1/2018,LRGS(LRGS/2018/USM-UKM/EWS/01).
文摘Chitin is the second most abundant polysaccharide,produced mainly as an industrial waste stream during crustacean processing.Chitin can be derived into chitosan through the deacetylation process.Conversion of shrimp waste into chitosan via the deacetylation process could be considered a practical approach for shell waste remediation.In this study,chitosan’s physicochemical characteristics extracted from two types of Pacific white leg shrimp,L.vannamei’s shell(i.e.,rough and smooth),were compared with commercial chitosan.The yield,moisture,ash,solubility,water and fat binding capacity were measured.The degree of deacetylation(DDA)was calculated using FTIR,and their chemical Structure was confirmed using XRD and SEM-EDS.Both extracted chitosan showed no significant difference in yield,moisture,ash,solubility and water binding capacity but showed a significant difference with commercial chitosan.Moreover,the fat binding capacity of commercial chitosan showed the lowest percentage(408.34±0.83%)as compared to extracted chitosan(smooth shell 549.59±12.48%;rough shell 500.55±12.10%).The DDA indicated that extracted chitosan from the smooth and rough shell was considered good chitosan as compared to commercial chitosan with 84.08±1.27%,80.78±0.79%and 74.99±1.48%,respectively.Additionally,the presence of hydroxyl and amino groups from FTIR and a good crystallinity index was recorded using XRD of extracted chitosan.Based on observed characteristics,shrimp shell waste from L.vannamei can achieve chitosan standard quality as a biopolymer and highly potential to be applied in various industrial applications.
基金This study was supported by Petrobras SA,FAPERJ(Fundacao Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro)CAPES(Conselho de Aperfeicoamento de Pessoal de Nível Superior)and CNPq(Conselho Nacional de Desenvolvimento Científico e Tec-nológico).
文摘Chitosan has a unique chemical structure with high charge density, reactive hydroxyl and amino groups, and extensive hydrogen bonding. Chitin deacetylase (EC 3.5.1.41) catalyzes the hydrolysis of the N-acetamido groups of N-acetyl-D-glucosamine residues in chitin, converting it to chitosan and releasing acetate. The entire ORF of the CDA2 gene encoding one of the two isoforms of chitin deacetylase from Saccharomyces cerevisiae was cloned in Pichia pastoris. The Tg (Cda2-6xHis)p was expressed at high levels as a soluble intracellular protein after induction of the recombinant yeast culture with methanol, and purified using nickel-nitrilotriacetic acid chelate affinity chromatography, resulting in a protein preparation with a purity of >98% and an overall yield of 79%. Chitin deacetylase activity was measured by a colorimetric method based on the O-phthalaldehyde reagent, which detects primary amines remaining in chitinous substrate after acetate release. The recombinant enzyme could deacetylate chitin, chitobiose, chitotriose and chitotetraose, with an optimum temperature of 50°C and pH 8.0, determined using oligochitosaccharides as the substrates. The recombinant protein was also able to deacetylate its solid natural substrate, shrimp chitin, to a limited extent, producing chitosan with a degree of acetylation (DA) of 89% as determined by Fourier transform infrared spectroscopy. The degree of deacetylation was increased by pre-hydrolysis of crystalline shrimp chitin by chitinases, which increased the deacetylation ratio triggered by chitin deacetylase, producing chito-oligosaccharides with a degree of acetylation of 33%. The results described here open the possibility to use the rCda2p, combined with chitinases, for biocatalytic conversion of chitin to chitosan with controlled degrees of deacetylation. We show herein that the crystalline chitin form can be cleanly produced in virtually quantitative yield if a combined and sequential enzyme treatment is performed.
文摘Chitosan is a biopolymer obtained from chitin, where the N-acetylglucosamine monomer is in its deacetylated form; this polymer is useful for a wide variety of industrial applications. The properties and uses of chitosan depend on its physical and chemical characteristics, which result from the treatments used for its production. In this study, we report the preparation and characterization ofchitosan oligosaccharides by a green synthesis from crystalline shrimp chitin, using a sequential enzyme treatment by chitinase and chitin deacetylase. Chitinases were purified from grapes and used to rupture the crystalline shrimp chitin structure, modifying the crystallinity index from 57.6% to 15.9%. The resultant polymers were deacetylated using a recombinant chitin deacetylase from Saccharomyces cerevisiae, which was cloned and expressed in Pichia pastoris. The chitosans produced showed an estimated DA (degree of acetylation) of approximately 20%, and the molecular weights ranged from -7,600 to -3,700 after treatment in pH 3.0 and pH 6.0 for 10 min and 40 min, respectively. Physical and chemical characterization of the products indicated that enzyme fragmentation of chitin probably makes the acetamide groups more accessible to deacetylation, forming homogeneous polymers that are free of hazardous sub-products, have defined low molecular weights, and are highly deacetylated.
基金Supported by the Key Natural Science Foundation of China (Grant No. 50633030)
文摘The methods of preparation of magnetic chitosan microspheres have been introduced. In addition, their applications in the wastewater treatment, based on different kinds of wastewater, have been reviewed, and their mechanisms have been discussed.