Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trac...Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trace elements.Methods:The preparation process of chitosan oligosaccharide selenium(COSSe)was optimized by the response surface method,followed by a detailed analysis of the resultant compound’s characteristics.The anti-cancer activity of COSSe was studied using the human ovarian cancer cell line SKOV3 as a cell model.Results:The prepared COSSe response surface was well predicted,indicating successful chitosan oligosaccharide binding with selenium.Response surface method analyses identified the optimal synthesis conditions for COSSe:the reaction time of 5.08 h,the reaction temperature of 71.8°C,and mass ratio(Na2SeO3:chitosan oligosaccharide)of 1.02.Under the optimal conditions,the final product,the selenium content,reached 1.302%.The results of cell experiments showed that COSSe significantly inhibited SKOV3 proliferation in a concentration-dependent manner.RNA-seq results showed that chitosan oligosaccharide and COSSe significantly modulated the expression of genes’DNA metabolic processes and cell cycle in SKOV3 cells.Gene enrichment analysis showed the inhibition of the cell cycle,and the results of flow cytometry showed that SKOV3 cells increased in the S phase and decreased in the G2/M phase,with a noted suppression in the protein expression of cyclin-dependent kinase 2(CDK2)and cyclin A1(CCNA1).Conclusion:COSSe has a stronger effect than chitosan oligosaccharide,leading to the arrest of the cell cycle in the S phase.Thus,COSSe may be an effective candidate for the treatment of ovarian cancer.展开更多
Although biopolymers have been widely utilized as triboelectric materials for the construction of self-powered sensing systems,the annihilation of triboelectric charges at high temperatures restricts the output signal...Although biopolymers have been widely utilized as triboelectric materials for the construction of self-powered sensing systems,the annihilation of triboelectric charges at high temperatures restricts the output signals and sensitivity of the assembled sensors.Herein,a novel chitosan/montmorillonite/lignin(CML)composite film was designed and employed as a tribopositive layer in the assembly of a self-powered sensing system for use under hot conditions(25-70℃).The dense contact surface resulting from the strong intermolecular interaction between biopolymers and nanofillers restrained the volatilization of induced electrons.The optimized CML-TENG delivered the highest open-circuit voltage(V_(oc))of 262 V and maximum instantaneous output power of 429 mW/m^(2).Pristine CH-TENG retained only 39%of its initial Voc at 70℃,whereas the optimized CM_(5)L_(3)-TENG retained 66%of its initial Voc.Our work provides a new strategy for suppressing the annihilation of triboelectric charges at high temperatures,thus boosting the development of self-powered sensing devices for application under hot conditions.展开更多
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of...Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.展开更多
The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic ker...Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic keratopathy are limited.In this study,an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor(CTH-mNGF).Its effectiveness was evaluated in corneal denervation(CD)mice and patients with neurotrophic keratopathy.In the preclinical setting,CTH-mNGF was assessed in a murine corneal denervation model.CTH-mNGF was transparent,thermosensitive,and ensured sustained release of mNGF for over 20 hours on the ocular surface,maintaining the local mNGF concentration around 1300 pg/mL in vivo.Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice.A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy.Patients received topical CTH-mNGF twice daily for 8 weeks.Fluorescein sodium images,Schirmer’s test,intraocular pressure,Cochet-Bonnet corneal perception test,and best corrected visual acuity were evaluated.In total,six patients(total of seven eyes)diagnosed with neurotrophic keratopathy were enrolled.After 8 weeks of CTH-mNGF treatment,all participants showed a decreased area of corneal epithelial defect,as stained by fluorescence.Overall,six out of seven eyes had fluorescence staining scores<5.Moreover,best corrected visual acuity,intraocular pressure,Schirmer’s test and Cochet-Bonnet corneal perception test results showed no significant improvement.An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes.This study demonstrates that CTH-mNGF is transparent,thermosensitive,and has sustained-release properties.Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy,being convenient and cost effective.展开更多
In this study,intelligent,pH-responsive colorimetric films were prepared by encapsulating anthocyanins in nanocomplexes prepared from glutenin and carboxymethyl chitosan.These nanocomplexes were added to a corn starch...In this study,intelligent,pH-responsive colorimetric films were prepared by encapsulating anthocyanins in nanocomplexes prepared from glutenin and carboxymethyl chitosan.These nanocomplexes were added to a corn starch matrix and used in the freshness monitoring of chilled pork.The effects of anthocyanin-loaded nanocomplexes on the physical,structural,and functional characteristics of the films were investigated.The addition of anthocyanin-loaded nanocomplexes increased the tensile strength,elongation at break,hydrophobicity,and light transmittance of the films while decreasing their water vapor permeability.This is because new hydrogen bonds are formed between the film components,resulting in a more homogeneous and dense structure.The colorimetric film has a significant color response to pH changes.These films were used in experiments on the freshness of chilled pork,in which the pH changes with changing freshness states.The results show that the colorimetric film can monitor changes in the freshness of chilled pork in real time,where orange,pink,and green represent the fresh,secondary fresh,and putrefied states of pork,respectively.Therefore,the intelligent colorimetric film developed in this study has good application potential in the food industry.展开更多
Objective:To improve the quality of post-thawing Boer buck semen for artificial insemination by adding green tea extract chitosan nanoparticles to skimmed egg yolk diluent,and the proper thawing temperature.Methods:Th...Objective:To improve the quality of post-thawing Boer buck semen for artificial insemination by adding green tea extract chitosan nanoparticles to skimmed egg yolk diluent,and the proper thawing temperature.Methods:The ejaculate of Boer buck was added to skimmed egg yolk diluent without(the control group)and with adding 1μg of chitosan nanoparticles of green tea extract per mL of diluent(the treatment group).Then,the diluted semen was filled in French mini straws containing 60×106 live sperm per straw,frozen in a standard protocol,and stored as frozen semen at−196℃for a week.Six replicates from each group were diluted for 30 s at 37℃or 39℃sterile water to evaluate the semen quality.Results:Post-thawing(at 37℃or 39℃)of live sperm,progressive motility,and plasma membrane integrity were lower compared to those of the pre-freezing stage(P<0.05).Thawing at 37℃resulted in no significant difference in live sperm,progressive motility,and plasma membrane between the control group and the treatment group(P>0.05).The live sperm,progressive motility,and plasma membrane of the treatment group in the pre-freezing stage,and post-thawed at 39℃were higher compared to those of the control group(P<0.05).There was no significant difference in malondialdehyde(MDA)concentration,DNA fragmentation,and catalase concentration of thawing at 37℃compared to those of 39℃in the same group.The MDA concentration and DNA fragmentation in thawing at 37℃and 39℃of the treatment group were significantly lower than those of the control group(P<0.05).However,the catalase concentration in thawing at 37℃and 39℃of the treatment group was not significantly different than the control group(P>0.05).Conclusions:Higher quality post-thawing Boer buck semen is achieved by adding 1μg/mL of chitosan nanoparticles of green tea extract to the skimmed egg yolk diluent and thawing at 39℃.展开更多
The production and consumption of avocado pears generates tons of wastes, mainly the pear peels which are usually discarded, although they have been reported to contain important phyto-chemicals with biological activi...The production and consumption of avocado pears generates tons of wastes, mainly the pear peels which are usually discarded, although they have been reported to contain important phyto-chemicals with biological activities. The adverse health effect associated with the consumption of saturated lipid based foods has ignited research on reformulation of lipid based foods to eliminate Trans Fatty Acids (TFAs). This study was thus aimed at the extraction and characterization of oil from Avocado Peels (APO) and evaluation of the quality of margarine produced from it. Five verities of pear were used for oil extraction by soxhlet method and physiochemical, oxidative, functional and antioxidant characterization was done. Margarines were formulated using a central composite design using oil blends of APO and Virgin Coconut Oil (VCO) with an oil ratio of 10:90, 40:60, 70:30 respectively, varied blending speed, blending time, and chitosan concentration. Samples were characterized and the effect of process parameters on the physiochemical and functional properties of the margarine studied. Optimized conditions were used to produce samples for sensory evaluation. Color, spreadability, aroma, taste and general acceptability was evaluated using ranking difference test. The results showed that the yield, density, and iodine values of APOs oils ranged from 14.91 ± 0.18 to 11.76 ± 0.46;0.93 ± 0.001 to 0.99 ± 0.1;46.63 ± 1.70 to 52.4 ± 0.63, their acid values, TBA and PV values ranged from 1.42 ± 0.39 to 1.97 ± 0.5;0.11 ± 0.002 to 0.18 ± 0.04;and 2.72 ± 0.14 to 4.43 ± 0.36 respectively, with Brogdon avocado peel variety having the overall best properties prepared blends of trans-free APO margarines showed that increase in APO ratio decreased melting point, increased oxidative stability and reduced moisture content of margarine samples. Chitosan addition leads to decrease moisture content and increase functional properties. VCO lead to increase in phenolic and flavonoid content of the margarines. Samples were spreadable and palatable with R20 being most palatable and the most accepted being R26 with a mean score of 7.07 ± 0.70. Decrease in color intensity increased acceptability. This study therefore demonstrated that avocado peel waste biomass can be valorized by using it as raw material for oil extraction, which can serve as good material for the production of trans-free margarines with good oxidative stability, functional and antioxidant properties.展开更多
This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prep...This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prepared by co-precipitation method from zinc acetate di-hydrate and incorporated in acrylamide grafted chitosan. FT-IR and TGA of the prepared composite film confirmed the successful incorporation of ZnO nanoparticles in the acrylamide-grafted polymer matrix. SEM images showed that the ZnO nanoparticles were homogeneously distributed on the porous matrix of the composite film. Water uptake and buffer uptake analysis revealed that the composite film could hold water and buffer sufficiently, which facilitated the absorption of exudate from the wound site. Amoxicillin was loaded in the prepared composite film and the maximum loading efficiency was found to be 67.33% with drug concentration of 300 ppm. In vitro studies showed greater antimicrobial activity of drug-loaded composite film compared to both pure film and standard antibiotic disc. Finally, the In vivo mouse model showed maximum healing efficiency compared to conventional gauge bandages because the loading of antibiotic in the film produced a synergistic effect and healing time was reduced.展开更多
Background: Maxillofacial trauma affects young adults more. The injury assessment is difficult to establish in low-income countries because of the imaging means, particularly the scanner, which is poorly available and...Background: Maxillofacial trauma affects young adults more. The injury assessment is difficult to establish in low-income countries because of the imaging means, particularly the scanner, which is poorly available and less financially accessible. The aim of this study is to describe the epidemiological profile and the various tomodensitometric aspects of traumatic lesions of the face in patients received in the Radiology department of Kira Hospital. Patients and methods: This is a descriptive retrospective study involving 104 patients of all ages over a period of 2 years from December 2018 to November 2019 in the medical imaging department of KIRA HOSPITAL. We included in our study any patient having undergone a CT scan of the head and presenting at least one lesion of the facial mass, whether associated with other cranioencephalic lesions. Results: Among the 384 patients received for head trauma, 104 patients (27.1% of cases) presented facial damage. The average age of our patients was 32.02 years with extremes of 8 months and 79 years. In our study, 87 of the patients (83.6%) were male. The road accident was the circumstance in which facial trauma occurred in 79 patients (76% of cases). These injuries were accompanied by at least one bone fracture in 97 patients (93.3%). Patients with fractures of more than 3 facial bones accounted for 40.2% of cases and those with fractures of 2 to 3 bones accounted for 44.6% of cases. The midface was the site of the fracture in 85 patients (87.6% of cases). Orbital wall fractures were noted in 57 patients (58.8% of cases) and the jawbone was the site of a fracture in 50 patients (51.5% of cases). In the vault, the fractures involved the extra-facial frontal bone (36.1% of cases) and temporal bone (18.6% of cases). Cerebral contusion was noted in 41.2% of patients and pneumoencephaly in 15.5% of patients. Extradural hematoma was present in 16 patients and subdural hematoma affected 13 patients. Conclusion: Computed tomography is a diagnostic tool of choice in facial trauma patients. Most of these young patients present with multiple fractures localizing to the mid-level of the face with concomitant involvement of the brain.展开更多
This paper focused on the effect of spraying chitosan and salicylic acid to Litchi under low temperature stress conditions.The physiology and biochemistry of litchi were studied as well.Results showed that the appropr...This paper focused on the effect of spraying chitosan and salicylic acid to Litchi under low temperature stress conditions.The physiology and biochemistry of litchi were studied as well.Results showed that the appropriate concentration of chitosan and salicylic acid treatment could effectively reduce injury caused by low temperature to litchi,compared with water control,chlorophyll,proline,soluble protein content of litchi after treatment and the activity of protective enzyme increasing significantly.However,the accumulation of resistance could significantly be improved.Furthermore,when 1 000 mg/L chitosan combined with 50 mg/L salicylic acid,the litchi acquired the best cold resistance capability.展开更多
A Mg?6%Zn?10%Ca3(PO4)2 composite with a chitosan coating was prepared to study its in vivo biodegradation properties. The chitosan dissolved in a 0.2% acetic acid solution was applied on the surface of Mg?6%Zn?10%Ca3(...A Mg?6%Zn?10%Ca3(PO4)2 composite with a chitosan coating was prepared to study its in vivo biodegradation properties. The chitosan dissolved in a 0.2% acetic acid solution was applied on the surface of Mg?6%Zn?10%Ca3(PO4)2 composite specimens and solidified at 60 °C for 30 min to form the coating. The cytotoxicity evaluation of chitosan coated specimens is at level 0, which indicates that such coating is safe for cellular applications. The in vivotests of chitosan coated composite show that the concentration of metal ions from the composite measured in the venous blood of Zelanian rabbits is less than that from the uncoated composite specimens. The chitosan coating impedes the in vivo degradation of the composite after surgery. The in vivo testing also indicates that the chitosan coated composite is harmless to important visceral organs, including the heart, kidneys and liver of the rabbits. The new bone formation surrounding the chitosan coated composite implant shows that the composite improves the concrescence of the bone tissues. And the chitosan coating is an effective corrosion resistant layer that reduces the hydrogen release of the implant composite, thereby decreasing the subcutaneous gas bubbles formed.展开更多
[Objective] This study aimed to inveseigate the effects of chitosan on physiological characteristics of tomato seedlings under salt stress. [Method] Under salt stress of 200 mmol/L NaCI, foliar spraying induction meth...[Objective] This study aimed to inveseigate the effects of chitosan on physiological characteristics of tomato seedlings under salt stress. [Method] Under salt stress of 200 mmol/L NaCI, foliar spraying induction method was used to explore the physiological role of chitosan in salt resistance of tomato seedlings with a concentration of 150 mg/L [Result] Chlorophyll content, free proline content, SOD activity and CAT activity of tomato seedlings treated with CTS + salt stress increased by 26.8%, 10.7%, 10% and 58.3%, respectively, compared with that in salt stress treatment group, while MDA content had decreased by 62.5%. [Conclusion] Chitosan could delay the decline of chlorophyll content, reduce membrane lipid peroxidation, improve osmotic adjustment ability of cells, enhance the activity of protective enzyme and improve the physiological synergisms on salt resistance of tomato seedlings.展开更多
[Objective] The aim was to explore effects of chitosan and organosilicon on tomato resistance against Botrytis cinerea. [Method] With leaf spraying method adopted, four groups were set in the test, including control g...[Objective] The aim was to explore effects of chitosan and organosilicon on tomato resistance against Botrytis cinerea. [Method] With leaf spraying method adopted, four groups were set in the test, including control group, groups treated with Botrytis cinerea, with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea, in order to study on effects of chitosan and organosilicon on antioxidant enzyme activities of tomato. [Result] Antioxidant enzyme activities of tomato seedlings were improved in groups with chitosan, organosilicon, and Botrytis cinerea and with chitosan and Botrytis cinerea compared with the group treated with Botrytis cinerea. On the 6th d, activities of PAL, SOD, POD, PPO and CAT in groups with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea increased by 27.36%, 52.07%, 43.55%, 82.02% and 71.82%, and 18.91%, 30.22%, 57.14%, 38.09% and 53.64%, respectively. [Conclusion] Antioxidant enzyme activities of tomato seedlings could be improved by chitosan and organosilicon.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
基金supported by Localization of oxygen radicals and enzymes in bivalve haemocytes to Jing Liu(20230058,6602423063).
文摘Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trace elements.Methods:The preparation process of chitosan oligosaccharide selenium(COSSe)was optimized by the response surface method,followed by a detailed analysis of the resultant compound’s characteristics.The anti-cancer activity of COSSe was studied using the human ovarian cancer cell line SKOV3 as a cell model.Results:The prepared COSSe response surface was well predicted,indicating successful chitosan oligosaccharide binding with selenium.Response surface method analyses identified the optimal synthesis conditions for COSSe:the reaction time of 5.08 h,the reaction temperature of 71.8°C,and mass ratio(Na2SeO3:chitosan oligosaccharide)of 1.02.Under the optimal conditions,the final product,the selenium content,reached 1.302%.The results of cell experiments showed that COSSe significantly inhibited SKOV3 proliferation in a concentration-dependent manner.RNA-seq results showed that chitosan oligosaccharide and COSSe significantly modulated the expression of genes’DNA metabolic processes and cell cycle in SKOV3 cells.Gene enrichment analysis showed the inhibition of the cell cycle,and the results of flow cytometry showed that SKOV3 cells increased in the S phase and decreased in the G2/M phase,with a noted suppression in the protein expression of cyclin-dependent kinase 2(CDK2)and cyclin A1(CCNA1).Conclusion:COSSe has a stronger effect than chitosan oligosaccharide,leading to the arrest of the cell cycle in the S phase.Thus,COSSe may be an effective candidate for the treatment of ovarian cancer.
基金grateful for the financial support from the National Natural Science Foundation of China(Nos.22208038,22278047,and 22208040)the Liaoning Revitalization Talent Program,China(No.XLYC2002024)the Fundamental Research Funds for the Universities of Liaoning Province,China(No.LJBKY2024055).
文摘Although biopolymers have been widely utilized as triboelectric materials for the construction of self-powered sensing systems,the annihilation of triboelectric charges at high temperatures restricts the output signals and sensitivity of the assembled sensors.Herein,a novel chitosan/montmorillonite/lignin(CML)composite film was designed and employed as a tribopositive layer in the assembly of a self-powered sensing system for use under hot conditions(25-70℃).The dense contact surface resulting from the strong intermolecular interaction between biopolymers and nanofillers restrained the volatilization of induced electrons.The optimized CML-TENG delivered the highest open-circuit voltage(V_(oc))of 262 V and maximum instantaneous output power of 429 mW/m^(2).Pristine CH-TENG retained only 39%of its initial Voc at 70℃,whereas the optimized CM_(5)L_(3)-TENG retained 66%of its initial Voc.Our work provides a new strategy for suppressing the annihilation of triboelectric charges at high temperatures,thus boosting the development of self-powered sensing devices for application under hot conditions.
基金The authors are thankful to Ministry of Human Resource Development(presently Ministry of Education),Government of India,New Delhi,for providing research facility by sanctioning Center of Excellence(F.No.5-6/2013-TS VII)in Tissue Engineering and Center of Excellence in Orthopedic Tissue Engineering and Rehabilitation funded by World Bank under TEQIP-II.
文摘Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering.
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
基金supported by PLA General Hospital Program,No.LB20201A010024(to LW).
文摘Neurotrophic keratopathy is a persistent defect of the corneal epithelium,with or without stromal ulceration,due to corneal nerve deficiency caused by a variety of etiologies.The treatment options for neurotrophic keratopathy are limited.In this study,an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor(CTH-mNGF).Its effectiveness was evaluated in corneal denervation(CD)mice and patients with neurotrophic keratopathy.In the preclinical setting,CTH-mNGF was assessed in a murine corneal denervation model.CTH-mNGF was transparent,thermosensitive,and ensured sustained release of mNGF for over 20 hours on the ocular surface,maintaining the local mNGF concentration around 1300 pg/mL in vivo.Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice.A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy.Patients received topical CTH-mNGF twice daily for 8 weeks.Fluorescein sodium images,Schirmer’s test,intraocular pressure,Cochet-Bonnet corneal perception test,and best corrected visual acuity were evaluated.In total,six patients(total of seven eyes)diagnosed with neurotrophic keratopathy were enrolled.After 8 weeks of CTH-mNGF treatment,all participants showed a decreased area of corneal epithelial defect,as stained by fluorescence.Overall,six out of seven eyes had fluorescence staining scores<5.Moreover,best corrected visual acuity,intraocular pressure,Schirmer’s test and Cochet-Bonnet corneal perception test results showed no significant improvement.An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes.This study demonstrates that CTH-mNGF is transparent,thermosensitive,and has sustained-release properties.Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy,being convenient and cost effective.
基金funded by the Hainan Provincial Natural Science Foundation of China[Grant Number 2019RC031]National Natural Science Foundation of China[Grant Number 31460407].
文摘In this study,intelligent,pH-responsive colorimetric films were prepared by encapsulating anthocyanins in nanocomplexes prepared from glutenin and carboxymethyl chitosan.These nanocomplexes were added to a corn starch matrix and used in the freshness monitoring of chilled pork.The effects of anthocyanin-loaded nanocomplexes on the physical,structural,and functional characteristics of the films were investigated.The addition of anthocyanin-loaded nanocomplexes increased the tensile strength,elongation at break,hydrophobicity,and light transmittance of the films while decreasing their water vapor permeability.This is because new hydrogen bonds are formed between the film components,resulting in a more homogeneous and dense structure.The colorimetric film has a significant color response to pH changes.These films were used in experiments on the freshness of chilled pork,in which the pH changes with changing freshness states.The results show that the colorimetric film can monitor changes in the freshness of chilled pork in real time,where orange,pink,and green represent the fresh,secondary fresh,and putrefied states of pork,respectively.Therefore,the intelligent colorimetric film developed in this study has good application potential in the food industry.
基金funded by Universitas Airlangga,Indonesia,contract number:1405/UN3.1.6/PT/2022.
文摘Objective:To improve the quality of post-thawing Boer buck semen for artificial insemination by adding green tea extract chitosan nanoparticles to skimmed egg yolk diluent,and the proper thawing temperature.Methods:The ejaculate of Boer buck was added to skimmed egg yolk diluent without(the control group)and with adding 1μg of chitosan nanoparticles of green tea extract per mL of diluent(the treatment group).Then,the diluted semen was filled in French mini straws containing 60×106 live sperm per straw,frozen in a standard protocol,and stored as frozen semen at−196℃for a week.Six replicates from each group were diluted for 30 s at 37℃or 39℃sterile water to evaluate the semen quality.Results:Post-thawing(at 37℃or 39℃)of live sperm,progressive motility,and plasma membrane integrity were lower compared to those of the pre-freezing stage(P<0.05).Thawing at 37℃resulted in no significant difference in live sperm,progressive motility,and plasma membrane between the control group and the treatment group(P>0.05).The live sperm,progressive motility,and plasma membrane of the treatment group in the pre-freezing stage,and post-thawed at 39℃were higher compared to those of the control group(P<0.05).There was no significant difference in malondialdehyde(MDA)concentration,DNA fragmentation,and catalase concentration of thawing at 37℃compared to those of 39℃in the same group.The MDA concentration and DNA fragmentation in thawing at 37℃and 39℃of the treatment group were significantly lower than those of the control group(P<0.05).However,the catalase concentration in thawing at 37℃and 39℃of the treatment group was not significantly different than the control group(P>0.05).Conclusions:Higher quality post-thawing Boer buck semen is achieved by adding 1μg/mL of chitosan nanoparticles of green tea extract to the skimmed egg yolk diluent and thawing at 39℃.
文摘The production and consumption of avocado pears generates tons of wastes, mainly the pear peels which are usually discarded, although they have been reported to contain important phyto-chemicals with biological activities. The adverse health effect associated with the consumption of saturated lipid based foods has ignited research on reformulation of lipid based foods to eliminate Trans Fatty Acids (TFAs). This study was thus aimed at the extraction and characterization of oil from Avocado Peels (APO) and evaluation of the quality of margarine produced from it. Five verities of pear were used for oil extraction by soxhlet method and physiochemical, oxidative, functional and antioxidant characterization was done. Margarines were formulated using a central composite design using oil blends of APO and Virgin Coconut Oil (VCO) with an oil ratio of 10:90, 40:60, 70:30 respectively, varied blending speed, blending time, and chitosan concentration. Samples were characterized and the effect of process parameters on the physiochemical and functional properties of the margarine studied. Optimized conditions were used to produce samples for sensory evaluation. Color, spreadability, aroma, taste and general acceptability was evaluated using ranking difference test. The results showed that the yield, density, and iodine values of APOs oils ranged from 14.91 ± 0.18 to 11.76 ± 0.46;0.93 ± 0.001 to 0.99 ± 0.1;46.63 ± 1.70 to 52.4 ± 0.63, their acid values, TBA and PV values ranged from 1.42 ± 0.39 to 1.97 ± 0.5;0.11 ± 0.002 to 0.18 ± 0.04;and 2.72 ± 0.14 to 4.43 ± 0.36 respectively, with Brogdon avocado peel variety having the overall best properties prepared blends of trans-free APO margarines showed that increase in APO ratio decreased melting point, increased oxidative stability and reduced moisture content of margarine samples. Chitosan addition leads to decrease moisture content and increase functional properties. VCO lead to increase in phenolic and flavonoid content of the margarines. Samples were spreadable and palatable with R20 being most palatable and the most accepted being R26 with a mean score of 7.07 ± 0.70. Decrease in color intensity increased acceptability. This study therefore demonstrated that avocado peel waste biomass can be valorized by using it as raw material for oil extraction, which can serve as good material for the production of trans-free margarines with good oxidative stability, functional and antioxidant properties.
文摘This study was carried out to prepare ZnO nanoparticles incorporated acrylamide grafted chitosan composite film for possible biomedical application especially drug loading in wound healing. ZnO nanoparticles were prepared by co-precipitation method from zinc acetate di-hydrate and incorporated in acrylamide grafted chitosan. FT-IR and TGA of the prepared composite film confirmed the successful incorporation of ZnO nanoparticles in the acrylamide-grafted polymer matrix. SEM images showed that the ZnO nanoparticles were homogeneously distributed on the porous matrix of the composite film. Water uptake and buffer uptake analysis revealed that the composite film could hold water and buffer sufficiently, which facilitated the absorption of exudate from the wound site. Amoxicillin was loaded in the prepared composite film and the maximum loading efficiency was found to be 67.33% with drug concentration of 300 ppm. In vitro studies showed greater antimicrobial activity of drug-loaded composite film compared to both pure film and standard antibiotic disc. Finally, the In vivo mouse model showed maximum healing efficiency compared to conventional gauge bandages because the loading of antibiotic in the film produced a synergistic effect and healing time was reduced.
文摘Background: Maxillofacial trauma affects young adults more. The injury assessment is difficult to establish in low-income countries because of the imaging means, particularly the scanner, which is poorly available and less financially accessible. The aim of this study is to describe the epidemiological profile and the various tomodensitometric aspects of traumatic lesions of the face in patients received in the Radiology department of Kira Hospital. Patients and methods: This is a descriptive retrospective study involving 104 patients of all ages over a period of 2 years from December 2018 to November 2019 in the medical imaging department of KIRA HOSPITAL. We included in our study any patient having undergone a CT scan of the head and presenting at least one lesion of the facial mass, whether associated with other cranioencephalic lesions. Results: Among the 384 patients received for head trauma, 104 patients (27.1% of cases) presented facial damage. The average age of our patients was 32.02 years with extremes of 8 months and 79 years. In our study, 87 of the patients (83.6%) were male. The road accident was the circumstance in which facial trauma occurred in 79 patients (76% of cases). These injuries were accompanied by at least one bone fracture in 97 patients (93.3%). Patients with fractures of more than 3 facial bones accounted for 40.2% of cases and those with fractures of 2 to 3 bones accounted for 44.6% of cases. The midface was the site of the fracture in 85 patients (87.6% of cases). Orbital wall fractures were noted in 57 patients (58.8% of cases) and the jawbone was the site of a fracture in 50 patients (51.5% of cases). In the vault, the fractures involved the extra-facial frontal bone (36.1% of cases) and temporal bone (18.6% of cases). Cerebral contusion was noted in 41.2% of patients and pneumoencephaly in 15.5% of patients. Extradural hematoma was present in 16 patients and subdural hematoma affected 13 patients. Conclusion: Computed tomography is a diagnostic tool of choice in facial trauma patients. Most of these young patients present with multiple fractures localizing to the mid-level of the face with concomitant involvement of the brain.
文摘This paper focused on the effect of spraying chitosan and salicylic acid to Litchi under low temperature stress conditions.The physiology and biochemistry of litchi were studied as well.Results showed that the appropriate concentration of chitosan and salicylic acid treatment could effectively reduce injury caused by low temperature to litchi,compared with water control,chlorophyll,proline,soluble protein content of litchi after treatment and the activity of protective enzyme increasing significantly.However,the accumulation of resistance could significantly be improved.Furthermore,when 1 000 mg/L chitosan combined with 50 mg/L salicylic acid,the litchi acquired the best cold resistance capability.
基金Project(2014)supported by the Open Fund of the State Key Laboratory of Powder Metallurgy,China
文摘A Mg?6%Zn?10%Ca3(PO4)2 composite with a chitosan coating was prepared to study its in vivo biodegradation properties. The chitosan dissolved in a 0.2% acetic acid solution was applied on the surface of Mg?6%Zn?10%Ca3(PO4)2 composite specimens and solidified at 60 °C for 30 min to form the coating. The cytotoxicity evaluation of chitosan coated specimens is at level 0, which indicates that such coating is safe for cellular applications. The in vivotests of chitosan coated composite show that the concentration of metal ions from the composite measured in the venous blood of Zelanian rabbits is less than that from the uncoated composite specimens. The chitosan coating impedes the in vivo degradation of the composite after surgery. The in vivo testing also indicates that the chitosan coated composite is harmless to important visceral organs, including the heart, kidneys and liver of the rabbits. The new bone formation surrounding the chitosan coated composite implant shows that the composite improves the concrescence of the bone tissues. And the chitosan coating is an effective corrosion resistant layer that reduces the hydrogen release of the implant composite, thereby decreasing the subcutaneous gas bubbles formed.
文摘[Objective] This study aimed to inveseigate the effects of chitosan on physiological characteristics of tomato seedlings under salt stress. [Method] Under salt stress of 200 mmol/L NaCI, foliar spraying induction method was used to explore the physiological role of chitosan in salt resistance of tomato seedlings with a concentration of 150 mg/L [Result] Chlorophyll content, free proline content, SOD activity and CAT activity of tomato seedlings treated with CTS + salt stress increased by 26.8%, 10.7%, 10% and 58.3%, respectively, compared with that in salt stress treatment group, while MDA content had decreased by 62.5%. [Conclusion] Chitosan could delay the decline of chlorophyll content, reduce membrane lipid peroxidation, improve osmotic adjustment ability of cells, enhance the activity of protective enzyme and improve the physiological synergisms on salt resistance of tomato seedlings.
文摘[Objective] The aim was to explore effects of chitosan and organosilicon on tomato resistance against Botrytis cinerea. [Method] With leaf spraying method adopted, four groups were set in the test, including control group, groups treated with Botrytis cinerea, with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea, in order to study on effects of chitosan and organosilicon on antioxidant enzyme activities of tomato. [Result] Antioxidant enzyme activities of tomato seedlings were improved in groups with chitosan, organosilicon, and Botrytis cinerea and with chitosan and Botrytis cinerea compared with the group treated with Botrytis cinerea. On the 6th d, activities of PAL, SOD, POD, PPO and CAT in groups with chitosan and Botrytis cinerea, and with chitosan, organosilicon, and Botrytis cinerea increased by 27.36%, 52.07%, 43.55%, 82.02% and 71.82%, and 18.91%, 30.22%, 57.14%, 38.09% and 53.64%, respectively. [Conclusion] Antioxidant enzyme activities of tomato seedlings could be improved by chitosan and organosilicon.