Chitosan\|gelatin blend films were prepared successfully by solution method, and characterized by FT\|IR, X\|ray diffraction, SEM, optical transmittance, percent water absorption and measurements of mechanical propert...Chitosan\|gelatin blend films were prepared successfully by solution method, and characterized by FT\|IR, X\|ray diffraction, SEM, optical transmittance, percent water absorption and measurements of mechanical properties. The results indicated there was some strong interaction and good compatibility between chitosan and gelatin molecule in the blend films. The introduction of chitosan was beneficial to decrease the percent water absorption,improve mechanical properties of gelatin. \;展开更多
A kind of slow release drug-loaded microspheres were prepared with gelatin, chitosan and montmorillonite(MMT) by an emulsification/chemical cross-linking method using glutaraldehyde as cross-linking agent and acyclo...A kind of slow release drug-loaded microspheres were prepared with gelatin, chitosan and montmorillonite(MMT) by an emulsification/chemical cross-linking method using glutaraldehyde as cross-linking agent and acyclovir as model drug. The microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM), respectively. The morphology, drug content, encapsulation efficiency and drug-release behavior were investigated with different MMT contents. The experimental results indicated that intercalated microspheres could be prepared, the morphology of microspheres was markedly affected by MMT. The glomeration performance of uncross-linked microspheres was improved because of the physical cross-linking of MMT. Drug content and encapsulation efficiency were decreased when increased the content of MMT, but burst release and the drug release were significantly decreased with the addition of MMT. Effective physical cross-linking could be formed when added MMT, and MMT could reduce the content of toxic chemical cross-linking agents.展开更多
The captopril/ Chitosan-gelatin net-polymer microspheres ( Gap/ CGNPMs ) were prepared using Chitosan ( CS ) and gelatin ( Gel ) by the methods of emulsification. A cross linked reagent alone or in combination ...The captopril/ Chitosan-gelatin net-polymer microspheres ( Gap/ CGNPMs ) were prepared using Chitosan ( CS ) and gelatin ( Gel ) by the methods of emulsification. A cross linked reagent alone or in combination with microcrystalline cellulose ( MCC ) was added in the process of preparation of microspheres to eliminate dose dumping and burst phenomenon of microspheres for the improvemeat of the therapeutic efficiency and the decrease of the side effects of captopril ( Cap ). The results indicate that Cap/ CGNPMs have a spherical shape , smooth surface roorphology and integral inside structure and no adhesive phenomena and good roobility , and the size distribution is mairdy from 220 to 280 μm. Researches on the Cap release test in vitro demonstrate that Cap/ CGNPMs are of the role of retarding release of Cap compared with Cap ordinary tablets (COT), embedding ratio (ER) , drug loading ( DL ), and swelling ratio ( SR ), and release behaviors of CGNPMS are influenced by process conditions of preparation such as experimental material ratio (EMR) , composition of cross linking reagents. Among these factors , the EMR(1/4), CLR ( FOR + TPP) and 0.75% microcrystulline cellulose (MCC) added to the microspheres are the optimal scheme to the preparation of Cap/CGNPMs. The Cap/CGNPMs have a good characteristic of sustained release of drug, and the process of emulsifieation and crossinking process is simple and stable. The CGNPMs is probable to be one of an ideal sustained release system for water-soluble drugs.展开更多
Chitosan, collagen I and gelatin were mixed in appropriate quantities to develop a new nerve repair material, with good arrangement and structure, as well as even aperture size. The composite material was sterilized b...Chitosan, collagen I and gelatin were mixed in appropriate quantities to develop a new nerve repair material, with good arrangement and structure, as well as even aperture size. The composite material was sterilized by 60Co irradiation for 24 hours prior to implantation in the right thigh of rats following sciatic nerve damage. Results showed that the material was nontoxic to the kidneys and the liver, and did not induce an inflammatory response in the muscles. The composite material enhanced the recovery of sciatic nerve damage in rats. These experimental findings indicate that the composite material offers good biocompatibility and has a positive effect on injured nerve rehabilitation.展开更多
Swelling properties of chitosan-gelatin films cross-linked by sulfate were investigated. Sulfate cross-linked chitosan-gelatin films (SCG) were prepared simply by dipping chitosan-gelatin films into sodium sulfate sol...Swelling properties of chitosan-gelatin films cross-linked by sulfate were investigated. Sulfate cross-linked chitosan-gelatin films (SCG) were prepared simply by dipping chitosan-gelatin films into sodium sulfate solution. The swelling behavior of SCG was investigated as a function of pH and ionic strength. Under acidic conditions pH less than 4, SCG swelled less than 120%, while under the conditions pH larger than 7.4, SCG swelled very significantly, the swelling ratio was over 350%. Sodium chloride weakened the electrostatic interaction between sulfate and amine ions of chitosan and gelatin, therefore facilitated the film swelling. The swelling ratio increased with increasing sodium chloride concentration, the SCG dissociated in the sodium chloride concentration of 0.20 mol·L?1. The parameters of film preparation such as sulfate concentration, dipping time, sulfate solution pH, influenced the film swelling behavior. The lower concentration and the higher pH of sulfate solution resulted in a larger swelling ratio. Key words chitosan - gelatin - sulfate cross-linking - swelling CLC number O 636.1 Foundation item: Supported by the National Natural Science Foundation of China (29977014)Biography: Xiao Ling (1964-), female, Associate professor, research direction, biopolymers.展开更多
To study the effect of chitosan-gelatin blends on the growth and proliferation of in vitro cultured bone marrow stromal cells(BMSCs) and explore a new carrier for the application of tissure engineering, cells from lon...To study the effect of chitosan-gelatin blends on the growth and proliferation of in vitro cultured bone marrow stromal cells(BMSCs) and explore a new carrier for the application of tissure engineering, cells from long bones of young rabbitsaged less than two weeks were expanded in vitro for one week and seeded onto the surface of pure chitosan and chitosan-gelatin blends. Cells attached to and proliferated on both pure chitosan and chitosan-gelatin blends were monitored with the aid of an inverted light microscope and a scanning electron microscope. The cell viability was monitored by MTT after 2, 4, 6, 8 days seeding. BMSCs could be attached to and proliferated on both pure chitosan and chitosan-gelatin blends and remain their morphologies seen in vivo. Chitosan-gelatin blends could promote BMSCs to proliferate(P<0.01). It is confirmed that chitosan-gelatin blends maintain the bioactivity feature of chitosan and even enhance the growth and proliferation of in vitro cultured BMSCs because of the adding of gelatin. It is a potential carrier for the delivery of cells tissue engineering.展开更多
Gelatin (Gel) and chitosan (CTS) have several biomedical applications because of their biodegradability and biocompatibility. Crosslinking of Gel and Gel/CTS systems was evaluated using N-acetyl-D-glucosamine (GlcNAc)...Gelatin (Gel) and chitosan (CTS) have several biomedical applications because of their biodegradability and biocompatibility. Crosslinking of Gel and Gel/CTS systems was evaluated using N-acetyl-D-glucosamine (GlcNAc) formed into sponges by lyophilization. The prepared sponges were used to study the adsorption and desorption of fluorescein isothiocyanate (FITC) labeled bovine serum albumin (BSA) as a model instead of a growth factor. The effect of FITC-BSA concentration and temperature on the adsorption behavior of Gel/CTS sponges was investigated. The Langmuir adsorption isotherm model was used on the basis of the assumption that monolayer adsorption occurs on the surface;the results fit with the experiment data. The adsorption constants were 5.77 and 9.68 mL/mg for Gel and Gel/CTS sponges, respectively. The adsorption thermodynamic constants were found;adsorption onto sponges was an exothermic reaction. In particular, Gibbs free energy (ΔG) exhibited negative values in the range of 283 - 343 K for both Gel and Gel/CTS sponges, demonstrating the spontaneous nature of adsorption reaction. In addition, desorption behavior was evaluated for different concentrations and pH values of the FITC-BSA solution. The high adsorbed amounts of FITC-BSA on sponge resulted in high desorbed amounts in sponge, up to 55% from 3.5 mg/mL adsorbed concentration (around 1.5 mg from 3 mg adsorb amount). Desorption decreased following the buffer solution pH decrease, from 7.4 to 4 and 2 in Gel and Gel/CTS sponges, respectively. Based on the results of this preliminary study, these composite sponges could have significant application in biomedical materials.展开更多
Composite drug membranes of gelatin/chitosan for therapy of glaucoma by trabeculectomy were prepared through solvent volatilization, using triamcinolone acetonide as a model drug. The membranes were characterized tr...Composite drug membranes of gelatin/chitosan for therapy of glaucoma by trabeculectomy were prepared through solvent volatilization, using triamcinolone acetonide as a model drug. The membranes were characterized try FT-IR, X-RD and SEM. Their degradability and swelling ability and biocompatibilhy were studied. The results showed that biocompatibilhy, flexibility, swelling ability and degradabilhy of the composhe films were better than pure film of chitosan. The composite membrane containing 25% ( w/ w ) of gelatin was best. The drug was loaded in fdm in crystallite. The rabbit eyes experiment after 8 weeks should that the form of follicle was all right, and ophthalmotonus maintain in the pesfect level.展开更多
文摘Chitosan\|gelatin blend films were prepared successfully by solution method, and characterized by FT\|IR, X\|ray diffraction, SEM, optical transmittance, percent water absorption and measurements of mechanical properties. The results indicated there was some strong interaction and good compatibility between chitosan and gelatin molecule in the blend films. The introduction of chitosan was beneficial to decrease the percent water absorption,improve mechanical properties of gelatin. \;
文摘A kind of slow release drug-loaded microspheres were prepared with gelatin, chitosan and montmorillonite(MMT) by an emulsification/chemical cross-linking method using glutaraldehyde as cross-linking agent and acyclovir as model drug. The microspheres were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM), respectively. The morphology, drug content, encapsulation efficiency and drug-release behavior were investigated with different MMT contents. The experimental results indicated that intercalated microspheres could be prepared, the morphology of microspheres was markedly affected by MMT. The glomeration performance of uncross-linked microspheres was improved because of the physical cross-linking of MMT. Drug content and encapsulation efficiency were decreased when increased the content of MMT, but burst release and the drug release were significantly decreased with the addition of MMT. Effective physical cross-linking could be formed when added MMT, and MMT could reduce the content of toxic chemical cross-linking agents.
基金Funded by the National Natural Science Foundation of China(No.30370344)
文摘The captopril/ Chitosan-gelatin net-polymer microspheres ( Gap/ CGNPMs ) were prepared using Chitosan ( CS ) and gelatin ( Gel ) by the methods of emulsification. A cross linked reagent alone or in combination with microcrystalline cellulose ( MCC ) was added in the process of preparation of microspheres to eliminate dose dumping and burst phenomenon of microspheres for the improvemeat of the therapeutic efficiency and the decrease of the side effects of captopril ( Cap ). The results indicate that Cap/ CGNPMs have a spherical shape , smooth surface roorphology and integral inside structure and no adhesive phenomena and good roobility , and the size distribution is mairdy from 220 to 280 μm. Researches on the Cap release test in vitro demonstrate that Cap/ CGNPMs are of the role of retarding release of Cap compared with Cap ordinary tablets (COT), embedding ratio (ER) , drug loading ( DL ), and swelling ratio ( SR ), and release behaviors of CGNPMS are influenced by process conditions of preparation such as experimental material ratio (EMR) , composition of cross linking reagents. Among these factors , the EMR(1/4), CLR ( FOR + TPP) and 0.75% microcrystulline cellulose (MCC) added to the microspheres are the optimal scheme to the preparation of Cap/CGNPMs. The Cap/CGNPMs have a good characteristic of sustained release of drug, and the process of emulsifieation and crossinking process is simple and stable. The CGNPMs is probable to be one of an ideal sustained release system for water-soluble drugs.
基金supported by the Department of Science and Technology of Jilin Province, China, No. 20070417
文摘Chitosan, collagen I and gelatin were mixed in appropriate quantities to develop a new nerve repair material, with good arrangement and structure, as well as even aperture size. The composite material was sterilized by 60Co irradiation for 24 hours prior to implantation in the right thigh of rats following sciatic nerve damage. Results showed that the material was nontoxic to the kidneys and the liver, and did not induce an inflammatory response in the muscles. The composite material enhanced the recovery of sciatic nerve damage in rats. These experimental findings indicate that the composite material offers good biocompatibility and has a positive effect on injured nerve rehabilitation.
文摘Swelling properties of chitosan-gelatin films cross-linked by sulfate were investigated. Sulfate cross-linked chitosan-gelatin films (SCG) were prepared simply by dipping chitosan-gelatin films into sodium sulfate solution. The swelling behavior of SCG was investigated as a function of pH and ionic strength. Under acidic conditions pH less than 4, SCG swelled less than 120%, while under the conditions pH larger than 7.4, SCG swelled very significantly, the swelling ratio was over 350%. Sodium chloride weakened the electrostatic interaction between sulfate and amine ions of chitosan and gelatin, therefore facilitated the film swelling. The swelling ratio increased with increasing sodium chloride concentration, the SCG dissociated in the sodium chloride concentration of 0.20 mol·L?1. The parameters of film preparation such as sulfate concentration, dipping time, sulfate solution pH, influenced the film swelling behavior. The lower concentration and the higher pH of sulfate solution resulted in a larger swelling ratio. Key words chitosan - gelatin - sulfate cross-linking - swelling CLC number O 636.1 Foundation item: Supported by the National Natural Science Foundation of China (29977014)Biography: Xiao Ling (1964-), female, Associate professor, research direction, biopolymers.
文摘To study the effect of chitosan-gelatin blends on the growth and proliferation of in vitro cultured bone marrow stromal cells(BMSCs) and explore a new carrier for the application of tissure engineering, cells from long bones of young rabbitsaged less than two weeks were expanded in vitro for one week and seeded onto the surface of pure chitosan and chitosan-gelatin blends. Cells attached to and proliferated on both pure chitosan and chitosan-gelatin blends were monitored with the aid of an inverted light microscope and a scanning electron microscope. The cell viability was monitored by MTT after 2, 4, 6, 8 days seeding. BMSCs could be attached to and proliferated on both pure chitosan and chitosan-gelatin blends and remain their morphologies seen in vivo. Chitosan-gelatin blends could promote BMSCs to proliferate(P<0.01). It is confirmed that chitosan-gelatin blends maintain the bioactivity feature of chitosan and even enhance the growth and proliferation of in vitro cultured BMSCs because of the adding of gelatin. It is a potential carrier for the delivery of cells tissue engineering.
文摘Gelatin (Gel) and chitosan (CTS) have several biomedical applications because of their biodegradability and biocompatibility. Crosslinking of Gel and Gel/CTS systems was evaluated using N-acetyl-D-glucosamine (GlcNAc) formed into sponges by lyophilization. The prepared sponges were used to study the adsorption and desorption of fluorescein isothiocyanate (FITC) labeled bovine serum albumin (BSA) as a model instead of a growth factor. The effect of FITC-BSA concentration and temperature on the adsorption behavior of Gel/CTS sponges was investigated. The Langmuir adsorption isotherm model was used on the basis of the assumption that monolayer adsorption occurs on the surface;the results fit with the experiment data. The adsorption constants were 5.77 and 9.68 mL/mg for Gel and Gel/CTS sponges, respectively. The adsorption thermodynamic constants were found;adsorption onto sponges was an exothermic reaction. In particular, Gibbs free energy (ΔG) exhibited negative values in the range of 283 - 343 K for both Gel and Gel/CTS sponges, demonstrating the spontaneous nature of adsorption reaction. In addition, desorption behavior was evaluated for different concentrations and pH values of the FITC-BSA solution. The high adsorbed amounts of FITC-BSA on sponge resulted in high desorbed amounts in sponge, up to 55% from 3.5 mg/mL adsorbed concentration (around 1.5 mg from 3 mg adsorb amount). Desorption decreased following the buffer solution pH decrease, from 7.4 to 4 and 2 in Gel and Gel/CTS sponges, respectively. Based on the results of this preliminary study, these composite sponges could have significant application in biomedical materials.
文摘Composite drug membranes of gelatin/chitosan for therapy of glaucoma by trabeculectomy were prepared through solvent volatilization, using triamcinolone acetonide as a model drug. The membranes were characterized try FT-IR, X-RD and SEM. Their degradability and swelling ability and biocompatibilhy were studied. The results showed that biocompatibilhy, flexibility, swelling ability and degradabilhy of the composhe films were better than pure film of chitosan. The composite membrane containing 25% ( w/ w ) of gelatin was best. The drug was loaded in fdm in crystallite. The rabbit eyes experiment after 8 weeks should that the form of follicle was all right, and ophthalmotonus maintain in the pesfect level.