Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trac...Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trace elements.Methods:The preparation process of chitosan oligosaccharide selenium(COSSe)was optimized by the response surface method,followed by a detailed analysis of the resultant compound’s characteristics.The anti-cancer activity of COSSe was studied using the human ovarian cancer cell line SKOV3 as a cell model.Results:The prepared COSSe response surface was well predicted,indicating successful chitosan oligosaccharide binding with selenium.Response surface method analyses identified the optimal synthesis conditions for COSSe:the reaction time of 5.08 h,the reaction temperature of 71.8°C,and mass ratio(Na2SeO3:chitosan oligosaccharide)of 1.02.Under the optimal conditions,the final product,the selenium content,reached 1.302%.The results of cell experiments showed that COSSe significantly inhibited SKOV3 proliferation in a concentration-dependent manner.RNA-seq results showed that chitosan oligosaccharide and COSSe significantly modulated the expression of genes’DNA metabolic processes and cell cycle in SKOV3 cells.Gene enrichment analysis showed the inhibition of the cell cycle,and the results of flow cytometry showed that SKOV3 cells increased in the S phase and decreased in the G2/M phase,with a noted suppression in the protein expression of cyclin-dependent kinase 2(CDK2)and cyclin A1(CCNA1).Conclusion:COSSe has a stronger effect than chitosan oligosaccharide,leading to the arrest of the cell cycle in the S phase.Thus,COSSe may be an effective candidate for the treatment of ovarian cancer.展开更多
The effects of five chito-oligomers, from dimer to hexamer (chitobiose, chitotriose, chitotetraose, chitopentaose, chitohexaose) separated from chitosan oligosaccharides, on nuclear factor -kappaB (NF-rd3) signali...The effects of five chito-oligomers, from dimer to hexamer (chitobiose, chitotriose, chitotetraose, chitopentaose, chitohexaose) separated from chitosan oligosaccharides, on nuclear factor -kappaB (NF-rd3) signaling pathway were investigated by using luciferase assay and laser scanning microscopy. The expression of NF-rd3 downstream genes (cyclin DI, TNFa and IL-6) were tested by real time PCR. We found that all five chitosan oligosaccharides increased NF-KB-dependent luciferase gene expression and NF-KB downstream genes transcription, and the most significant were chitotetraose and chitohexaose. In addition, laser scanning microscopy experiments showed that chitotetraose and chitohexaose also activated the p65 subunite of NF-kB translocating from cytoplasm to nucleus, which suggested that they were the most potent activators of NF-kB signaling pathway.展开更多
UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that wi...UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.展开更多
This study investigated the effect of a chitosan oligosaccharide-Ca complex (COS-Ca) on the depuration of cadmium (Cd) from Chlamys ferrari. After exposure to 0.5 mg L-1 CdCl2 for 3 or 7 d, the scallops were treated b...This study investigated the effect of a chitosan oligosaccharide-Ca complex (COS-Ca) on the depuration of cadmium (Cd) from Chlamys ferrari. After exposure to 0.5 mg L-1 CdCl2 for 3 or 7 d, the scallops were treated by COS-Ca prior to determina-tion of Cd, calcium (Ca) and zinc (Zn) contents, Cd distribution in organs, malondialdehyde (MDA) content and antioxidant variables. Results showed that COS-Ca reduced Cd content in the viscera of the scallops, with highest Cd depuration rate (47%) observed on day 3. The COS-Ca concentration substantially affected Cd depuration, and the exposure to 8.75 mg L-1 COS-Ca led to significantly higher Cd depuration rate compared with those of lower COS-Ca concentrations (1.75, 3.5, 5.25, and 7.00 mg L-1). Distribution analysis of Cd in scallop organs indicated that COS-Ca significantly reduced Cd content in the kidney throughout the 5-d experiment, as well as in the gill during the early stage of Cd depuration. In addition, COS-Ca treatment decreased glutathione peroxidase (GSH-Px) activity and MDA content while increasing superoxide dismutase (SOD) and catalase (CAT) activities on different days. Our work suggested COS-Ca complex treatment as an effective method for acceleration of Cd depuration from Cd-contaminated bivalves.展开更多
Atherosclerosis(AS)is a primary cause of morbidity and mortality all over the world.Molecular imaging techniques can enable early localization and diagnosis of atherosclerosis plaques.Recent newly developed chitooligo...Atherosclerosis(AS)is a primary cause of morbidity and mortality all over the world.Molecular imaging techniques can enable early localization and diagnosis of atherosclerosis plaques.Recent newly developed chitooligosaccharides(CSO)is considered to be capable of target mannose receptors on the surface of macrophages and to inhibit foam cell formation.Here we present a targeting magnetic resonance imaging(MRI)nanoprobe,which was successfully constructed with polyacrylic acid(PAA)modified nanometer iron oxide(Fe_(3)O_(4))as the core,and coating with CSO molecules,possessing the abilities of targeted MRI and specifically inhibition of the formation of foamy macrophages in the atherosclerotic process.The experimental results showed that the distributions of PAA-Fe_(3)O_(4) and CSO-PAA-Fe_(3)O_(4) were uniform and the corresponding sizes were about 5.93 nm and 8.15 nm,respectively.The Fourier transform infrared spectra(FTIR)testified the CSO was coupled with PAA-Fe_(3)O_(4) successfully.After coupled with CSO,the r1 of PAA-Fe_(3)O_(4) was increased from 5.317 mM s-1 to 6.147 mM s-1,indicating their potential as MRI contrast agent.Oil Red O staining and total cholesterols(TC)determination showed that CSO-PAA-Fe_(3)O_(4) could significantly inhibit the foaming process of RAW264.7 cells induced by oxidatively modified low density lipoprotein(ox-LDL).In vitro cellular MRI displayed that,compared with PAA-Fe_(3)O_(4),CSO-PAA-Fe_(3)O_(4) could lower the T1 relaxation time of RAW264.7 cells better.In summary,construction of CSO-PAA-Fe_(3)O_(4) nanoprobe in this study could realize the targeted MRI of macrophages and inhibition of ox-LDL induced macrophage foaming process.This will provide a new avenue in the diagnosis and treatment of AS.展开更多
[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (D...[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (DS)were obtained by etherizing chito-oligosacchaside. Their structure and substituted degree were characterized and their antioxldant activity to·OH was evaluated. [ Result] The IC50 s of NOA ,NOB and NOC were 0.15 ,0. 29 ,0. 23 mg/ml while their DSs of -NH2 position(DSN) were 0.51,0.29 and 0.38 and DSo were 0. 74 ,0. 84 ,0. 97respectively.[ Conclusion] With the increase of DSN ,antioxidant activity of N,O-carboxymethyl chitosan oligosaccharide to·OH was up.展开更多
基金supported by Localization of oxygen radicals and enzymes in bivalve haemocytes to Jing Liu(20230058,6602423063).
文摘Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trace elements.Methods:The preparation process of chitosan oligosaccharide selenium(COSSe)was optimized by the response surface method,followed by a detailed analysis of the resultant compound’s characteristics.The anti-cancer activity of COSSe was studied using the human ovarian cancer cell line SKOV3 as a cell model.Results:The prepared COSSe response surface was well predicted,indicating successful chitosan oligosaccharide binding with selenium.Response surface method analyses identified the optimal synthesis conditions for COSSe:the reaction time of 5.08 h,the reaction temperature of 71.8°C,and mass ratio(Na2SeO3:chitosan oligosaccharide)of 1.02.Under the optimal conditions,the final product,the selenium content,reached 1.302%.The results of cell experiments showed that COSSe significantly inhibited SKOV3 proliferation in a concentration-dependent manner.RNA-seq results showed that chitosan oligosaccharide and COSSe significantly modulated the expression of genes’DNA metabolic processes and cell cycle in SKOV3 cells.Gene enrichment analysis showed the inhibition of the cell cycle,and the results of flow cytometry showed that SKOV3 cells increased in the S phase and decreased in the G2/M phase,with a noted suppression in the protein expression of cyclin-dependent kinase 2(CDK2)and cyclin A1(CCNA1).Conclusion:COSSe has a stronger effect than chitosan oligosaccharide,leading to the arrest of the cell cycle in the S phase.Thus,COSSe may be an effective candidate for the treatment of ovarian cancer.
基金Funded by the State High-Technology R&D Project of China (863 Program) ( 2007AA091603)
文摘The effects of five chito-oligomers, from dimer to hexamer (chitobiose, chitotriose, chitotetraose, chitopentaose, chitohexaose) separated from chitosan oligosaccharides, on nuclear factor -kappaB (NF-rd3) signaling pathway were investigated by using luciferase assay and laser scanning microscopy. The expression of NF-rd3 downstream genes (cyclin DI, TNFa and IL-6) were tested by real time PCR. We found that all five chitosan oligosaccharides increased NF-KB-dependent luciferase gene expression and NF-KB downstream genes transcription, and the most significant were chitotetraose and chitohexaose. In addition, laser scanning microscopy experiments showed that chitotetraose and chitohexaose also activated the p65 subunite of NF-kB translocating from cytoplasm to nucleus, which suggested that they were the most potent activators of NF-kB signaling pathway.
文摘UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.
基金supported by grants of the National Key Technology Research and Development Program in the 11th Five-Year Plan of China (2008BAD94B\09)the National Natural Science Foundation of China (Grant No. 30972289)
文摘This study investigated the effect of a chitosan oligosaccharide-Ca complex (COS-Ca) on the depuration of cadmium (Cd) from Chlamys ferrari. After exposure to 0.5 mg L-1 CdCl2 for 3 or 7 d, the scallops were treated by COS-Ca prior to determina-tion of Cd, calcium (Ca) and zinc (Zn) contents, Cd distribution in organs, malondialdehyde (MDA) content and antioxidant variables. Results showed that COS-Ca reduced Cd content in the viscera of the scallops, with highest Cd depuration rate (47%) observed on day 3. The COS-Ca concentration substantially affected Cd depuration, and the exposure to 8.75 mg L-1 COS-Ca led to significantly higher Cd depuration rate compared with those of lower COS-Ca concentrations (1.75, 3.5, 5.25, and 7.00 mg L-1). Distribution analysis of Cd in scallop organs indicated that COS-Ca significantly reduced Cd content in the kidney throughout the 5-d experiment, as well as in the gill during the early stage of Cd depuration. In addition, COS-Ca treatment decreased glutathione peroxidase (GSH-Px) activity and MDA content while increasing superoxide dismutase (SOD) and catalase (CAT) activities on different days. Our work suggested COS-Ca complex treatment as an effective method for acceleration of Cd depuration from Cd-contaminated bivalves.
基金funded by Innovation and Entrepreneurship Training Program of College Students(201910313120H)financially supported by Outstanding Youth Project of Natural Science Foundation of Jiangsu Province(BK20170054)National Demonstration Center for Experimental Basic Medical Science Education(Xuzhou Medical University).
文摘Atherosclerosis(AS)is a primary cause of morbidity and mortality all over the world.Molecular imaging techniques can enable early localization and diagnosis of atherosclerosis plaques.Recent newly developed chitooligosaccharides(CSO)is considered to be capable of target mannose receptors on the surface of macrophages and to inhibit foam cell formation.Here we present a targeting magnetic resonance imaging(MRI)nanoprobe,which was successfully constructed with polyacrylic acid(PAA)modified nanometer iron oxide(Fe_(3)O_(4))as the core,and coating with CSO molecules,possessing the abilities of targeted MRI and specifically inhibition of the formation of foamy macrophages in the atherosclerotic process.The experimental results showed that the distributions of PAA-Fe_(3)O_(4) and CSO-PAA-Fe_(3)O_(4) were uniform and the corresponding sizes were about 5.93 nm and 8.15 nm,respectively.The Fourier transform infrared spectra(FTIR)testified the CSO was coupled with PAA-Fe_(3)O_(4) successfully.After coupled with CSO,the r1 of PAA-Fe_(3)O_(4) was increased from 5.317 mM s-1 to 6.147 mM s-1,indicating their potential as MRI contrast agent.Oil Red O staining and total cholesterols(TC)determination showed that CSO-PAA-Fe_(3)O_(4) could significantly inhibit the foaming process of RAW264.7 cells induced by oxidatively modified low density lipoprotein(ox-LDL).In vitro cellular MRI displayed that,compared with PAA-Fe_(3)O_(4),CSO-PAA-Fe_(3)O_(4) could lower the T1 relaxation time of RAW264.7 cells better.In summary,construction of CSO-PAA-Fe_(3)O_(4) nanoprobe in this study could realize the targeted MRI of macrophages and inhibition of ox-LDL induced macrophage foaming process.This will provide a new avenue in the diagnosis and treatment of AS.
基金Supported by Shanghai Leading Academic Discipline(Project No.T1102)Shanghai Commission of Education Scientific Research Project(07zz134)~~
文摘[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (DS)were obtained by etherizing chito-oligosacchaside. Their structure and substituted degree were characterized and their antioxldant activity to·OH was evaluated. [ Result] The IC50 s of NOA ,NOB and NOC were 0.15 ,0. 29 ,0. 23 mg/ml while their DSs of -NH2 position(DSN) were 0.51,0.29 and 0.38 and DSo were 0. 74 ,0. 84 ,0. 97respectively.[ Conclusion] With the increase of DSN ,antioxidant activity of N,O-carboxymethyl chitosan oligosaccharide to·OH was up.